Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phép toán về căn thức Dương Minh Hùng

Nội dung Các phép toán về căn thức Dương Minh Hùng Bản PDF - Nội dung bài viết Các phép toán về căn thức Dương Minh Hùng Các phép toán về căn thức Dương Minh Hùng Tài liệu này được biên soạn bởi thầy giáo Dương Minh Hùng, với mục đích phân dạng và hướng dẫn giải các dạng toán về căn thức. Tài liệu gồm 19 trang, phù hợp cho học sinh lớp 9 tham khảo khi học chương trình Toán lớp 9 và ôn thi vào lớp 10 môn Toán. Bài giảng được chia thành ba phần chính: A. Tóm tắt lý thuyết: Căn bậc hai số học. Liên hệ giữa phép nhân với phép khai phương. Liên hệ giữa phép chia với phép khai phương. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản: Tập trung vào cách giải các dạng toán căn thức cơ bản như: Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Tính giá trị biểu thức chứa căn. Rút gọn biểu thức chứa căn. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện: Nhằm giúp học sinh luyện tập và củng cố kiến thức về căn thức thông qua việc giải các bài tập thực hành. Chắc chắn rằng tài liệu này sẽ hỗ trợ học sinh trong việc hiểu và áp dụng các kiến thức liên quan đến căn thức một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc ở tâm, số đo cung
Nội dung Chuyên đề góc ở tâm, số đo cung Bản PDF - Nội dung bài viết Chuyên Đề Góc Ở Tâm, Số Đo CungTóm Tắt Lý Thuyết:Bài Tập Minh Họa:Phiếu Bài Tự Luyện: Chuyên Đề Góc Ở Tâm, Số Đo Cung Tài liệu này gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề góc ở tâm, số đo cung. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. Tóm Tắt Lý Thuyết: Góc ở tâm Số đo cung So sánh hai cung Định lí Bài Tập Minh Họa: Phương pháp giải bài tập trong tài liệu này giúp học sinh tính số đo của góc ở tâm và số đo của cung bị chắn. Một số kiến thức quan trọng bao gồm: Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ Số đo của nửa đường tròn là 180 độ Cung cả đường tròn có số đo 360 độ Sử dụng tỉ số lượng giác của một góc để tính góc Sử dụng quan hệ đường kính và dây cung Phiếu Bài Tự Luyện: Tài liệu cung cấp phiếu bài tập tự luyện để học sinh tự kiểm tra và củng cố kiến thức sau khi học xong phần lý thuyết và bài tập minh họa.
Chuyên đề vị trí tương đối của hai đường tròn
Nội dung Chuyên đề vị trí tương đối của hai đường tròn Bản PDF - Nội dung bài viết Chuyên đề vị trí tương đối của hai đường trònKIẾN THỨC TRỌNG TÂMCÁC DẠNG BÀI MINH HỌATRẮC NGHIỆM RÈN PHẢN XẠ Chuyên đề vị trí tương đối của hai đường tròn Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm tổng cộng 36 trang. Nó tập trung vào kiến thức quan trọng về vị trí tương đối của hai đường tròn và cung cấp hướng dẫn chi tiết để giải các dạng bài tập tự luận & trắc nghiệm trong chương trình Hình học lớp 9, chương 2 bài số 7 và bài số 8. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm: - Đường nối tâm là trục đối xứng của hình tạo bởi hai đường tròn. - Nếu hai đường tròn tiếp xúc nhau, tiếp điểm sẽ nằm trên đường nối tâm. - Nếu hai đường tròn cắt nhau, đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm và bán kính: - Hai đường tròn có thể cắt nhau, tiếp xúc nhau hoặc không giao nhau. - Trường hợp tiếp xúc nhau có thể là tiếp xúc ngoài hoặc tiếp xúc trong. - Trường hợp không giao nhau có thể hai đường tròn ở ngoài nhau, một đường tròn đựng đường tròn khác hoặc hai đường tròn đồng tâm. CÁC DẠNG BÀI MINH HỌA - Dạng 1: Nhận biết vị trí tương đối của hai đường tròn. - Dạng 2: Bài tập về hai đường tròn cắt nhau. - Dạng 3: Bài tập về hai đường tròn tiếp xúc. TRẮC NGHIỆM RÈN PHẢN XẠ Ngoài ra, tài liệu cũng cung cấp bài tập tự luyện để học sinh rèn luyện kỹ năng giải các bài toán liên quan đến vị trí tương đối của hai đường tròn.
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Nội dung Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Bản PDF - Nội dung bài viết Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường trònTóm tắt lý thuyếtBài tập và các dạng toánTrắc nghiệm rèn phản xạ Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Tài liệu này bao gồm 28 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn. Hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. Tóm tắt lý thuyết Dấu hiệu 1: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng đó là một tiếp tuyến của đường tròn. Dấu hiệu 2: Theo định nghĩa tiếp tuyến. Bài tập và các dạng toán Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải có thể làm theo các cách như chứng minh điểm tiếp xúc nằm trên đường tròn và vuông góc với đường thẳng, hoặc kẻ đoạn vuông góc từ tâm đến điểm tiếp xúc và chứng minh bằng tính chất vuông góc. Dạng 2: Tính độ dài. Sử dụng định lý và công thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3: Bài toán tổng hợp. Trắc nghiệm rèn phản xạ Sau khi học lý thuyết và làm bài tập, học sinh có thể rèn luyện kỹ năng phản xạ qua việc làm các câu hỏi trắc nghiệm để kiểm tra hiểu biết và áp dụng kiến thức.
Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Nội dung Chuyên đề vị trí tương đối của đường thẳng và đường tròn Bản PDF - Nội dung bài viết Chuyên đề vị trí tương đối của đường thẳng và đường tròn Chuyên đề vị trí tương đối của đường thẳng và đường tròn Tài liệu này, được biên soạn bởi tác giả Toán Học Sơ Đồ, bao gồm 26 trang chứa kiến thức quan trọng về vị trí tương đối của đường thẳng và đường tròn. Tài liệu này không chỉ tổng hợp các kiến thức cơ bản mà còn cung cấp hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm liên quan đến chuyên đề này. Đây sẽ là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập môn Hình học 9, đặc biệt là chương 2 - bài số 4. A. Kiến thức cần nhớ: Vị trí tương đối của đường thẳng và đường tròn Tính chất của tiếp tuyến Tính chất của hai tiếp tuyến cắt nhau Đường tròn nội tiếp tam giác Đường tròn bàng tiếp tam giác B. Các dạng bài tập tự luận minh họa: Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn Dạng 2: Bài tập vận dụng tính chất tiếp tuyến Dạng 3: Chứng minh tiếp tuyến của đường tròn Dạng 4: Nâng cao phát triển tư duy C. Trắc nghiệm rèn luyện phản xạ D. Bài tập tự luyện