Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép cộng phân số, tính chất cơ bản của phép cộng phân số
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép cộng phân số, tính chất cơ bản của phép cộng phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu các quy tắc thực hiện phép toán cộng: Cộng hai phân số cùng mẫu, cộng hai phân số không cùng mẫu. + Nắm vững các tính chất của phép cộng phân số. Kỹ năng: + Thực hiện được phép toán cộng đối với phân số: Cộng hai phân số cùng mẫu, cộng hai phân số khác mẫu. + Thành thạo quy đồng và rút gọn phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép cộng các phân số. Cộng hai phân số cùng mẫu: Cộng các tử và giữ nguyên mẫu. Cộng hai phân số không cùng mẫu: + Bước 1: Rút gọn phân số (nếu có phân số chưa tối giản). + Bước 2: Quy đồng mẫu số các phân số. + Bước 3: Thực hiện phép cộng của hai phân số cùng mẫu. Chú ý rút gọn kết quả. Thực hiện phép cộng nhiều phân số: Áp dụng tính chất cơ bản của phép cộng phân số: + Tính chất giao hoán. + Tính chất kết hợp. + Cộng với số 0. Dạng 2 . So sánh tổng với một số. Đánh giá các số hạng của tổng đều lớn hơn hoặc nhỏ hơn một số nào đó. Đếm số số hạng của tổng. Từ đó suy ra kết luận. Dạng 3 . Tìm số chưa biết trong một đẳng thức.
Chuyên đề so sánh phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề so sánh phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững cách so sánh hai phân số cùng mẫu, hai phân số khác mẫu. + Hiểu khái niệm phân số âm và phân số dương. Kĩ năng: + Biết so sánh hai phân số. + Biết cách sắp xếp dãy các phân số theo thứ tự tăng dần hoặc giảm dần. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : So sánh các phân số cùng mẫu. Bài toán 1. So sánh các phân số. + Bước 1. Viết phân số có mẫu âm (nếu có) thành phân số có mẫu dương. + Bước 2. So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn. Bài toán 2. Sắp xếp các phân số. + Bước 1. So sánh các phân số. + Bước 2. Sắp xếp các phân số theo thứ tự yêu cầu của bài toán. Dạng 2 : So sánh các phân số không cùng mẫu. Cách 1. Quy đồng mẫu. + Bước 1. Quy đồng mẫu số các phân số (biến đổi thành các phân số có cùng mẫu dương). + Bước 2. So sánh các phân số có cùng mẫu dương. Cách 2. Quy đồng tử. Cách 3. Sử dụng phân số trung gian. Ngoài ra, còn một số phương pháp khác để so sánh hai phân số: + Rút gọn phân số. + Sử dụng định nghĩa hai phân số bằng nhau.
Chuyên đề quy đồng mẫu nhiều phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quy đồng mẫu nhiều phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được thế nào là quy đồng mẫu nhiều phân số. + Nắm được các bước tiến hành quy đồng mẫu nhiều phân số. Kĩ năng: + Biết cách quy đồng được mẫu nhiều phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Quy đồng mẫu các phân số. Muốn quy đồng mẫu số nhiều phân số ta làm như sau: + Bước 1. Tìm một bội chung của các mẫu (thường là BCNN) để làm mẫu chung. + Bước 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu). + Bước 3. Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng. Chú ý: Trước khi quy đồng cần viết phân số dưới dạng phân số có mẫu dương. Nên rút gọn các phân số trước khi quy đồng. Dạng 2 : Bài toán đưa về việc quy đồng mẫu số các phân số. Để kiểm tra hai phân số có bằng nhau hay không ta đưa phân số về chung mẫu. Hai phân số có tử mẫu bằng nhau thì bằng nhau. Hai cách có thể dùng để đưa hai phân số về chung mẫu là: + Cách 1. Rút gọn phân số. + Cách 2. Quy đồng mẫu số. Để tìm số nguyên x trong đẳng thức về phân số ta có thể quy đồng mẫu sau đó tìm x để các tử số bằng nhau.
Chuyên đề tính chất cơ bản của phân số, rút gọn phân số
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất cơ bản của phân số, rút gọn phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững tính chất cơ bản của phân số. + Nắm được cách rút gọn phân số. + Hiểu được khái niệm phân số tối giản. Kĩ năng: + Viết được phân số có mẫu âm thành phân số bằng nó có mẫu dương. + Vận dụng tính chất của phân số để so sánh, rút gọn các phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm số chưa biết trong đẳng thức của phân số. Nhân hoặc chia cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Dạng 2 . Rút gọn phân số – rút gọn biểu thức dạng phân số. Để rút gọn phân số ta chia cả tử và mẫu của nó cho một ước chung (khác 1 và -1) của chúng. Khi nói rút gọn một phân số, ta thường hiểu là đưa phân số đó về dạng tối giản. Để rút gọn phân số 0 a b b thành phân số tối giản, ta làm như sau: + Bước 1. Tìm ƯCLN(a;b) = n. + Bước 2. Chia cả tử và mẫu cho n. Dạng 3 . Phân số bằng nhau. Dạng 4 . Biểu diễn các số đo dưới dạng phân số với đơn vị cho trước. Dựa vào tỉ lệ của các đại lượng mà ta chuyển về dạng phân số. Dạng 5 . Phân số tối giản. Phân số a/b tối giản nếu |a| và |b| là hai số nguyên tố cùng nhau, hay ƯC(a;b) = {-1;1}. Chứng minh phân số a/b tối giản: Ta chứng minh ƯCLN(a;b) = 1.