Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin kính chào quý thầy cô và các em học sinh lớp 8. Chúng tôi muốn giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 8 cấp huyện năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá tổ chức. Kỳ thi sẽ diễn ra vào ngày 12 tháng 03 năm 2023. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thọ Xuân - Thanh Hoá: An rời nhà để đến nhà Bích với vận tốc 4km/h. Bích cũng rời nhà để đến nhà An 20 phút sau với vận tốc 3 km/h. An và Bích gặp nhau trên đường và sau đó cùng đi về nhà Bích. Khi về đến nhà An, quãng đường An đã đi ra đúng bốn lần quãng đường Bích đã đi. Hỏi quãng đường từ nhà An đến nhà Bích là bao nhiêu? Cho hình vuông ABCD và điểm H thuộc cạnh BC. Trên nửa mặt phẳng bờ BC không chứa hình vuông ABCD dựng hình vuông CHIK. Chứng minh một số tính chất liên quan đến các đường và góc trong hình. Tìm các cặp số nguyên (x;y) thỏa mãn phương trình x2 - 4xy + 5y2 - 16 = 0. Chứng minh một mệnh đề về tính chia hết của số nguyên tố. File WORD hoàn chỉnh sẽ được cung cấp cho quý thầy cô để tham khảo. Mong rằng đề thi sẽ giúp các em học sinh lớp 8 rèn luyện kỹ năng và kiến thức môn Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.
Đề Olympic Toán 8 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. 1) Chứng minh AB2 = 4 AC.BD. 2) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. 3) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. + Cho đa thức f(x) = x3 – 3×2 + 3x – 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2. + Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: P.