Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát lớp 9 môn Toán năm học 2017 2018 phòng GD và ĐT Ba Đình Hà Nội

Nội dung Đề thi khảo sát lớp 9 môn Toán năm học 2017 2018 phòng GD và ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề thi khảo sát Toán lớp 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình Hà Nội Đề thi khảo sát Toán lớp 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình Hà Nội Đề thi khảo sát Toán lớp 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình - Hà Nội có 1 trang với 5 bài toán tự luận. Thời gian làm bài là 90 phút, kỳ thi được tổ chức vào ngày 03/03/2018 nhằm giúp học sinh khối 9 tại các trường THCS Phan Chu Trinh và THCS Mạc Đĩnh Chi (Hà Nội) chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Đề thi cung cấp lời giải chi tiết cho từng bài toán. Trích dẫn đề thi khảo sát Toán lớp 9: Bài 1: Để hoàn thành một công việc theo dự định, cần một số công nhân làm trong một số ngày nhất định. Nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới hoàn thành. Nếu tăng thêm 5 công nhân, công việc sẽ hoàn thành sớm 4 ngày. Hỏi cần bao nhiêu công nhân và làm bao nhiêu ngày? Bài 2: Giải phương trình x^2 - 2(m - 1)x - m^2 + m - 1 = 0 (x là ẩn số). a) Giải phương trình với m = 2. b) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi số thực m. Bài 3: Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H. 1. Chứng minh tứ giác BKHN là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHN. 2. Chứng minh góc KBH = KCA. 3. Gọi E là trung điểm của cạnh AC. Chúng minh KE là tiếp tuyến của đường tròn (I). 4. Đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc với ME. Đề thi này cung cấp cơ hội cho học sinh lớp 9 rèn luyện kỹ năng giải các bài toán Toán, từ đơn giản đến phức tạp, nhằm nâng cao kiến thức và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 ôn thi vào lớp 10 THPT lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Cho hàm số y = (m + 2)x + n (d). a) Tìm m, n để đường thẳng (d) có hệ số góc là -1 và qua điểm A(-2;3) b) Tìm m, n để đường thẳng (d) song song với đường thẳng y = 3x – 1 và cắt đường thẳng y = 2x + 5 tại điểm có tung độ là 3. + Cho nửa đường tròn (O;R) đường kính AB. Từ điểm M tùy ý thuộc nửa đường tròn (O) (M khác A và B) vẽ tiếp tuyến dvới nửa đường tròn (O). Gọi I, K là hình chiếu của A và B trên đường thẳng d. Gọi H là hình chiếu của M trên AB. a) Chứng minh: Bốn điểm B, H, M, K cùng thuộc một đường tròn b) Chứng minh BM là tia phân giác của góc OBK và tam giác IHK vuông c) Xác định vị trí của M trên nửa đường tròn (O) để diện tích tứ giác AIKB lớn nhất. + Cho x, y > 0 và x + y ≤ 4/5. Tìm giá trị nhỏ nhất của biểu thức: M = x + y + 1/x + 1/y.
Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đội hoàn thành được 25% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc? + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng: (d): y = x + 2 và (d’): y = -2x + 5 a) Tìm tọa độ giao điểm A của (d) và (d’) b) Gọi B, C lần lượt là giao điểm của (d) và (d’) với trục tung. Tính diện tích ABC. + Cho đường tròn (O;R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC = R. Trên cung nhỏ BC lấy điểm D (D khác B, C); AC cắt BD tại E; kẻ EH vuông góc với AB tại H, EH cắt AD tại I. Tia DH cắt (O;R) tại điểm thứ hai là F. a) Chứng minh bốn điểm A, H, D, E cùng thuộc một đường tròn. b) Chứng minh DHE = DFC từ đó suy ra CF vuông góc AB. c) Chứng minh BCF là tam giác đều. Xác định vị trí của D trên cung nhỏ BC để chu vi tứ giác ABDC đạt giá trị lớn nhất.
Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Ba Đình, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 21 tháng 02 năm 2023. Trích dẫn Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Hai đội công nhân cùng làm một công việc 6 ngày xong. Nếu đội thứ nhất làm một mình trong 3 ngày và đội thứ hai làm một mình trong 2 ngày thì được 4/9 công việc. Hỏi nếu làm một mình mỗi đội bao lâu xong công việc. + Cho hình vẽ bên. Biết số đo cung EF bằng 134 độ, AOC = 70 độ. a) Tính số đo cung AmC? b) Tính góc AEC và góc AFC? c) Tính góc EIF? d) Tính góc xCE? e) Tính góc EKC? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt đường tròn tại điểm E, cắt dây BC tại I. a) Chứng minh BIA = ACE b) Chứng minh EC2 = EA.EI.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 trường THCS Phú La - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Phú La, quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 trường THCS Phú La – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai người thợ nếu cùng làm chung một công việc thì sau 12 giờ sẽ xong. Nếu người thứ nhất làm riêng trong 8 giờ rồi người thứ hai làm riêng trong 12 giờ thì cả hai người làm được 80% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu? + Cho hệ phương trình. a) Giải hệ phương trình với m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. 1) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. 2) Kẻ tiếp tuyến DE của (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. 3) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và DQ. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi.