Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu trong đề giao lưu HSG Toán lớp 8 năm 2016-2017 phòng GD&ĐT Tam Dương - Vĩnh Phúc: - Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. Chứng minh rằng DE + DF = 2AM. - Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh rằng N là trung điểm của EF. - Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? - Cho hai đa thức A = n^6 + 10n^4 + n^3 + 98n - 6n^5 - 26 và B = 1 + n^3 - n. Chứng minh với mọi số nguyên n, thương của phép chia A cho B là bội số của 6. Hy vọng đề giao lưu này sẽ giúp các em học sinh lớp 8 củng cố kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Hải Hòa - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Hải Hòa – Nam Định : + Cho biểu thức. a) Nêu ĐKXĐ và Rút gọn biểu thức A. b) Tính giá trị của biểu thức A biết x thoã mãn: x2 + x = 2. c) Tìm các giá trị x > 0 để biểu thức 6 B A nhận giá trị nguyên. + Cho tam giác ABC nhọn. Các đường cao AE BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM a cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh: NC ND và HI HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. + Cho hai số dương x y thỏa mãn: 2 2 2 4 4 12 9 1 y x xx y. Hãy tìm giá trị nhỏ nhất của biểu thức: Q xy y x 323.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Xác định đa thức P(x), biết P(x) chia cho đa thức x + 1 dư 4, P(x) chia cho đa thức x + 2 dư 6, P(x) chia cho đa thức x2 + 3x + 2 được thương là x + 3 và còn dư. Cho ba số dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức: M = 1/a + 1/4b + 1/16c. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên tia HC lấy điểm M sao cho HM = AH. Vẽ hình bình hành AHMN, MN cắt AC tại E. Vẽ hình bình hành BAED. Chứng minh: a. AB = AE b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. + Cho tam giác ABC có góc ABC = 120°, các đường phân giác BD, AE, CF. a. Chứng minh rằng: 1/BD = 1/BA + 1/BC. b. Tính góc EDF.
Đề học sinh giỏi lần 2 Toán 8 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 8 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho tam giác ABC có ba góc nhọn (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BFC đồng dạng BDA và BFD = ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với HM, đường thẳng này cắt các đường thẳng AB, AD, AC lần lượt tại P, Q, R. Chứng minh: PQ = QR. + Hai địa điểm A và B cách nhau 200 km. Cùng một lúc một xe ô tô khởi hành từ A và một xe máy khởi hành từ B đi ngược chiều nhau. Xe ô tô và xe máy gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau xe máy một giờ thì sẽ gặp nhau tại điểm D cách C một khoảng là bao nhiêu km? Biết rằng vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 20 km/h. + Cho tứ giác ABCD có các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi I là điểm nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết SAMIQ = 32 (cm2), SBMIN = 50 (cm2) và SDPIQ = 20 (cm2).
Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT thành phố Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2y2 = 4x2y – y3 – 4×2 + 3y2 − 1. + Cho số tự nhiên n ≥ 2 và số nguyên tố p thoả mãn p − 1 chia hết cho n đồng thời n3 − 1 chia hết cho p. Chứng minh rằng: n + p là một số chính phương. + Cho hình vuông ABCD cạnh a. Trên cạnh BC lấy điểm M (khác B và C), qua điểm A kẻ tia Ax vuông góc với AM cắt tia CD tại điểm F. 1) Chứng minh rằng: AM = AF. 2) Trên cạnh CD lấy điểm N sao cho MAN = 45°, gọi giao điểm của AM, AN với BD lần lượt tại Q và P; gọi I là giao điểm của MP và NQ. Chứng minh: AI vuông góc MN tại H. 3) Tìm giá trị nhỏ nhất của diện tích tam giác AMN khi M, N thay đổi.