Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 11 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ

Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ Bản PDF Ngày 20 tháng 04 năm 2019, cụm các trường THPT chuyên khu vực Duyên hải và Đồng bằng Bắc Bộ liên kết tổ chức kỳ thi giao lưu học sinh giỏi Toán lớp 11 lần thứ 12 năm học 2018 – 2019. Đề thi HSG Toán lớp 11 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ được biên soạn theo dạng đề tự luận với 5 bài toán, đề thi gồm 1 trang, học sinh làm bài trong khoảng thời gian 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ : + Cho tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB ở D, E, F. Đường thẳng qua A song song BC cắt DE, DF lần lượt tại M, N. Đường tròn ngoại tiếp tam giác DMN cắt đường tròn (I) tại điểm L khác D. a) Chứng minh A, K, L thẳng hàng. b) Tiếp tuyến với đường tròn ngoại tiếp tam giác DMN tại M, N cắt EF tại U, V. Chứng minh rằng đường tròn ngoại tiếp tam giác UVL tiếp xúc với đường tròn ngoại tiếp tam giác DMN. [ads] + Cho đa giác lồi n đỉnh A0A1 … An-1 (n ≥ 2). Mỗi cạnh và đường chéo của đa giác được tô bởi một trong k màu sao cho không có hai đoạn thẳng nào cùng xuất phát từ một đỉnh cùng màu. Tìm giá trị nhỏ nhất của k. + Cho p là số nguyên tố có dạng 12k + 11. Một tập con S của tập M = {1; 2; 3 … p – 2; p – 1} được gọi là “tốt” nếu như tích của tất cả các phần tử của S không nhỏ hơn tích của tất cả các phần tử của M\S. Ký hiệu ΔS hiệu của hai tích trên. Tìm giá trị nhỏ nhất của số dư khi chia ΔS cho p xét trên mọi tập con tốt của M có chứa đúng (p – 1)/2 phần tử. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 11 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng (ABCD). Biết AB a BC a 3 và SD a 5. Đường thẳng qua A vuông góc với AC cắt các đường thẳng CB CD lần lượt tại I J. Gọi H là hình chiếu vuông góc của A trên SC. Gọi K L là giao điểm của SB SD với (HIJ) a. Chứng minh rằng AK SBC. b. Tính khoảng cách từ điểm B đến (HIJ). + Trên một đường thẳng có n điểm màu xanh và n điểm màu đỏ. Chứng minh rằng tổng tất cả các khoảng cách giữa các cặp điểm cùng màu bé hơn hoặc bằng tổng tất cả các khoảng cách giữa các cặp điểm khác màu. + Cho dãy số (un) xác định bởi 1 n u và 2 1 1 n n n u u với n = 1, 2, 3 … Tính giới hạn lim n n u +∞.
Đề thi chọn học sinh giỏi tỉnh lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn học sinh giỏi tỉnh cấp THPT môn Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận. Nội dung đề gồm các phần: lượng giác, xác suất, giới hạn, hình học không gian, min – max và dãy số. Đề thi có lời giải chi tiết và thang điểm.
Đề thi chọn học sinh giỏi lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi chọn học sinh giỏi lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Vĩnh Phúc Bản PDF Đề thi chọn học sinh giỏi Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận. Đề thi có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh AC và M là trung điểm cạnh BC. Đoạn thẳng AM cắt đường tròn ngoại tiếp tam giác BCD tại điểm E. Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại điểm F khác B. Đường thẳng AF cắt đường thẳng BE tại I, đường thẳng CI cắt đường thẳng BD tại K. a. Chứng minh rằng DA = DF b. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ABK + Cho S là một số nguyên dương sao cho S chia hết cho tất cả các số nguyên dương từ 1 đến 2017. Xét k số nguyên dương a1, a2, … ak (không nhất thiết phân biệt) thuộc tập hợp {1, 2, … 2017} thỏa mãn a1 + a2 + … + ak >= 2S. Chứng minh rằng ta có thể chọn ra từ các số a1, a2, … ak một vài số sao cho tổng của chúng bằng S.
Đề thi KSCL học sinh giỏi lớp 11 môn Toán năm học 2016 2017 cụm thi THPT Yên Thành Nghệ An
Nội dung Đề thi KSCL học sinh giỏi lớp 11 môn Toán năm học 2016 2017 cụm thi THPT Yên Thành Nghệ An Bản PDF Đề thi KSCL học sinh giỏi Toán lớp 11 năm học 2016 – 2017 cụm thi THPT Yên Thành – Nghệ An gồm 6 câu hỏi tự luận, có lời giải chi tiết.