Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bình Phước

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bình Phước. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bình Phước, kỳ thi được diễn ra vào ngày 01/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bình Phước : + Nông trường cao su Minh Hưng (xã Minh Hưng, huyện Bù Đăng, tỉnh Bình Phước) phải khai thác 260 tấn mũ trong một thời gian nhất ñịnh. Trên thực tế, mỗi ngày nông trường ñều khai thác vượt ñịnh mức 3 tấn. Do ñó, nông trường ñã khai thác ñược 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác ñược bao nhiêu tấn mũ cao su. [ads] + Cho parabol (P): y = 1/2.x^2 và ñường thẳng (d): y = x + 2. a) Vẽ parabol (P) và ñường thẳng (d) trên cùng hệ trục tọa ñộ Oxy. b) Viết phương trình ñường thẳng (d1): y = ax + b song song với (d) và cắt (P) tại ñiểm A có hoành ñộ bằng −2 . + Không sử dụng máy tính, giải hệ phương trình 2x + y = 5  và x + 2y = 4.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thanh Hóa
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm M(2;3). [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BD, CE (D thuộc AC, E thuộc AB) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N (M khác B, N khác C). 1. Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn. 2. Chứng minh MN song song với DE. 3. Khi đường tròn (O) và dây BC cố định, điểm A di động trên cùng lớn BC sao cho tam giác ABC nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để diện tích tam giác ADE đạt giá trị lớn nhất. + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị nhỏ nhất của biểu thức: Q = (y + 2)/x^2 + (z + 2)/y^2 + (x + 2)/z^2.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Quảng Ninh
Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh : + Cho phương trình x^2 + 4x + 3m – 2 = 0, với m là tham số. 1. Giải phương trình với m = -1. 2. Tìm giá trị của m để phương trình đã cho có một nghiệm x = 2. 3. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 sao cho x1 + 2×2 = 1. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 32 km. Một canô xuôi dòng từ bến A đến bến B rồi lập tức quay về bến A. Kể từ lúc khởi hành đến lúc về tới bến A hết tất cả 6 giờ. Tính vận tốc của cano khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. [ads] + Cho đường tròn (O;R) và A là một điểm nằm bên ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của đường tròn (O). AD cắt đường tròn tại điểm thứ hai là E. a. Chứng minh ABOC là tứ giác nội tiếp. b. Tính độ dài AH, biết R = 3cm, AB = 4cm. c. Chứng minh AE.AD = AH.AO. d. Tia CE cắt AH tại F. Chứng tỏ F là trung điểm của AH.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Khánh Hòa
Thứ Năm ngày 16 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Khánh Hòa : + Để chung tay phòng chống dịch COVID-19, hai trường A và B trên địa bàn tỉnh Khánh Hòa phát động phong trào quyên góp ủng hộ người dân có hoàn cảnh khó khăn. Hai trường đã quyên góp được 1137 phần quà gồm mì tôm (đơn vị thùng) và gạo (đơn vị bao). Trong đó, mỗi lớp của trường A ủng hộ được 8 thùng mì và 5 bao gạo; mỗi lớp của trường B ủng hộ được 7 thùng mì và 8 bao gạo. Biết số bao gạo ít hơn số thùng mì là 75 phần quà. Hỏi mỗi trường có bao nhiêu lớp? [ads] + Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H. a. Chứng minh tứ giác IMON nội tiếp đường tròn. b. Chứng minh IM.IN = IH.IK. c. Kẻ NP vuông góc với MK. Chứng minh đường thẳng IK đi qua trung điểm của NP. + Giải phương trình x2 – 5x + 4 = 0.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hải Dương
Thứ Năm ngày 16 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 hệ THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hải Dương gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hải Dương : + Một đoàn xe nhận chở 480 tấn hàng. Khi sắp khởi hành, đoàn có thêm 3 xe nữa nên mỗi xe chở ít hơn 8 tấn so với dự định. Hỏi lúc đầu đoàn xe có bao nhiêu chiếc? Biết rằng các xe chở khối lượng hàng bằng nhau. [ads] + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn (O;R). Gọi D, E, F là chân các đường cao lần lượt thuộc các cạnh BC, CA, AB và H là trực tâm của ∆ABC. Vẽ đường kính AK. a) Chứng minh tứ giác BHCK là hình bình hành. b) Trong trường hợp ∆ABC không cân, gọi M là trung điểm của BC. Hãy chứng minh FC là phân giác của DFE và bốn điểm M, D, F, E cùng nằm trên một đường tròn. c) Khi BC và đường tròn (O;R) cố định, điểm A thay đổi trên đường tròn sao cho ∆ABC luôn nhọn, đặt BC = a. Tìm vị trí của điểm A để tổng P = DE + EF + DF lớn nhất và tìm giá trị lớn nhất đó theo a và R. + Cho phương trình x2 – 3x + 1 = 0. Gọi x1 và x2 là hai nghiệm của phương trình. Hãy tính giá trị biểu thức A = x1^2 + x2^2.