Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Cần Thơ

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo thành phố Cần Thơ. Kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ: 1. Một bình chứa nước có dạng hình nón và mực nước trong bình cách đỉnh 8 cm (minh họa như Hình 1). Khi đảo ngược bình lại thì phần không gian trống của bình có chiều cao 2 cm (minh họa như Hình 2). Hãy tính chiều cao của bình. 2. Cho hình bình hành ABCD có CB = CA. Gọi M là điểm bất kỳ trên tia đối của tia BA. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng MD tại điểm N (N khác D), đường tròn ngoại tiếp tam giác AMN cắt đường thẳng MC tại điểm K (K khác M). a) Chứng minh tứ giác ABKC nội tiếp. b) Gọi I là giao điểm của đường thẳng AN và đường thẳng BK. Chứng minh I luôn thuộc một đường thẳng cố định khi M thay đổi. 3. Cho bảng ô vuông có kích thước 4x4 như sau: Mỗi ô trong bảng này được viết một số nguyên dương sao cho 16 số trên bảng đôi một khác nhau và trong mỗi hàng, mỗi cột luôn tồn tại một số bằng tổng của ba số còn lại tương ứng trong hàng, trong cột đó. Gọi M là số lớn nhất trong bảng. Tìm giá trị nhỏ nhất của M. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 phòng GD ĐT Nghĩa Đàn Nghệ An Đề thi thử Toán vào lần 2 năm 2022-2023 phòng GD ĐT Nghĩa Đàn Nghệ An Sytu xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng điểm qua đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022-2023 do phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An tổ chức. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm các giá trị của a, b để đường thẳng (d): y = ax + b song song với đường thẳng (d): y = -3x + 5 và đi qua điểm M thuộc đồ thị hàm số y = -x^2 có hoành độ bằng -2. 2. Seagame 31 sẽ diễn ra tại Việt Nam từ ngày 12/05/2022 đến ngày 23/05/2022. Siêu thị Điện Máy Xanh đã giảm giá nhiều mặt hàng điện tử để kích cầu mua sắm trong dịp này. Giá niêm yết của một chiếc Tivi và một tủ lạnh là 24,4 triệu đồng. Sau khi giảm giá, Cô Liên đã mua hai sản phẩm trên với tổng số tiền là 16,77 triệu đồng. Hãy tính giá mỗi món đồ trước khi giảm giá. 3. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC vào đường tròn (O). Chứng minh rằng tứ giác ABOC nội tiếp đường tròn và các mệnh đề khác liên quan đến đường tròn và các điểm E, F, H, K, M. Hy vọng rằng các em sẽ ôn tập và làm bài thi thật tốt. Chúc các em thành công!
Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bình Lục Hà Nam
Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bình Lục Hà Nam Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 phòng GD ĐT Bình Lục Hà Nam Đề thi thử Toán vào năm 2022-2023 phòng GD ĐT Bình Lục Hà Nam Chào mừng đến với Đề thi thử Toán môn Toán tuyển sinh vào lớp 10 THPT năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam. Dưới đây là một số câu hỏi thú vị và phức tạp trong đề thi: 1. Cho Parabol (P): y = x^2 và đường thẳng (d): y = (2m + 1)x - 2m với m là tham số. Trong các điểm M, N, điểm nào thuộc (P)? Tìm m để (P) cắt (d) tại hai điểm phân biệt A(x1;y1), B(x2;y2). 2. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), (AB < AC). Ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh tứ giác BFEC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BFEC. Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KF.KE = KB.KC. Đường thẳng AK cắt đường tròn (O) tại M (M khác A). Chứng minh MAF = MEF. Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. 3. Cho a, b, c là các số dương. Chứng minh abc
Đề thi thử Toán vào năm 2022 2023 trường THCS Vĩnh Quang Thanh Hóa
Nội dung Đề thi thử Toán vào năm 2022 2023 trường THCS Vĩnh Quang Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 trường THCS Vĩnh Quang Thanh Hóa Đề thi thử Toán vào năm 2022-2023 trường THCS Vĩnh Quang Thanh Hóa Chào quý thầy cô và các em học sinh lớp 9! Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2022-2023 trường THCS Vĩnh Quang, chúng tôi xin giới thiệu đề thi thử môn Toán. Kỳ thi sẽ diễn ra vào ngày 27 tháng 05 năm 2022. Dưới đây là một số câu hỏi trích từ đề thi thử Toán vào lớp 10 năm học 2022-2023 trường THCS Vĩnh Quang - Thanh Hóa: 1. Cho hàm số y = mx + n (với m khác 0). Tìm m và n sao cho đồ thị hàm số đó (đường thẳng) song song với đường thẳng y = -x + 2021 và đi qua điểm A(1;2022). 2. Giải phương trình x2 + 5x + m - 2 = 0 (với m là tham số) để có hai nghiệm phân biệt x1 và x2. 3. Trong đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại điểm H. Với điểm C nằm ngoài đường tròn sao cho AC cắt đường tròn tại K (khác A) và dây MN cắt dây BK tại E. Chứng minh tứ giác AHEK nội tiếp và tam giác NFK cân. Mong rằng đề thi thử này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An
Nội dung Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 do phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An tổ chức. Trích đề thi thử Toán vào 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An: Cho phương trình: x2 – 2x + m – 1 = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = -7 b) Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn hệ thức 2x1 + 2x2 + x12x22 = 8. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để tham gia kỷ niệm ngày sinh của Bác 19/05, trường THCS A dự định lấy 120 học sinh gồm nam và nữ tham gia diễu hành. Nhưng sau đó ban tổ chức đã cắt giảm 20% số học sinh nam và 10% số học sinh nữ, do vậy tổng số học sinh tham gia diễu hành ít hơn dự kiến ban đầu là 17 em. Tính số học sinh nam và nữ dự định lấy để tham gia diễu hành. Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CA lấy điểm E. Qua điểm C vẽ đường thẳng vuông góc với BE tại F. a) Chứng minh tứ giác BOCF là tứ giác nội tiếp. b) Gọi H là giao điểm của OF và BC. Chứng minh CH.FC = BH.FE. c) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O) tại G. Chứng minh D, H, G thẳng hàng.