Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 trường THCS Đặng Chánh Kỷ Nghệ An

Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Đặng Chánh Kỷ Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 trường THCS Đặng Chánh Kỷ Nghệ An Đề thi thử Toán vào năm 2021 - 2022 trường THCS Đặng Chánh Kỷ Nghệ An Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Đặng Chánh Kỷ - Nghệ An bao gồm một trang đề với 5 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Đặng Chánh Kỷ - Nghệ An: + Phương trình: x2 - 5x + m + 1 = 0 (1) (trong đó m là tham số). Yêu cầu tìm m sao cho phương trình có hai nghiệm x1, x2 thỏa mãn. + Một tổ sản xuất dự định may 180 triệu chiếc khẩu trang kháng khuẩn để tặng cho các chiến sỹ đang đấu tranh chống dịch Covid-19. Khi thực hiện, năng suất mỗi ngày tăng thêm 1 triệu khẩu trang so với kế hoạch nên thời gian giảm đi 1 ngày và vượt kế hoạch 10 triệu khẩu trang. Hỏi năng suất và thời gian dự định ban đầu của tổ sản xuất ấy là bao nhiêu? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB, AC đến (O) và vẽ đường kính BD của đường tròn (O). Điểm D là giao điểm của AD và đường tròn (O). Thực hiện các yêu cầu sau: a) Chứng minh rằng AB2 = AE . AD. b) Gọi H là giao điểm của OA và BC. Chứng minh rằng HC là tia phân giác của góc DHE. c) Gọi I là trung điểm của đoạn thẳng ED, S là giao điểm của BC và tiếp tuyến tại D của (O). Chứng minh rằng S, I, O thẳng hàng.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An; đề thi được dành cho các thí sinh thi vào trường THPT chuyên Phan Bội Châu (Nghệ An) và trường THPT chuyên – trường Đại học Vinh (Nghệ An); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và đường thẳng AO cắt đường tròn (O) tại E (E khác A). a) Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. b) Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của P Q. Chứng minh rằng AN luôn đi qua một điểm cố định. + Cho 676 số nguyên tố khác nhau. Chứng minh rằng có ít nhất hai số trong các số đã cho mà hiệu của chúng chia hết cho 2022. + Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương.
Đề Toán (chuyên) thi vào 10 năm 2021 - 2022 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán (chuyên) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Trị; đề thi được dành cho thí sinh thi chuyên Toán; kỳ thi được diễn ra vào sáng thứ Năm ngày 03 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT tỉnh Đồng Nai; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tìm giá trị của tham số thực m để Parabol 2 Pyx và đường thẳng 2 3 dy x m có đúng một điểm chung. + Cho phương trình 2 x x 5 40. Gọi 1 2 x x là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị biểu thức 2 2 1 2 12 Q x x xx. + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24 km h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của bạn Mai khi đi học bằng xe đạp.