Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Lâm Đồng

Nội dung Đề thi HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Lâm Đồng Bản PDF Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT Nam Định
Ngày … tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi chọn học sinh giỏi (HSG) môn Toán (tổ hợp) lớp 12 THPT năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Nam Định gồm 02 phần: Phần I: Trắc nghiệm một lựa chọn (Thí sinh ghi đáp án vào ô tương ứng của tờ giấy thi), Phần II: Thí sinh ghi câu trả lời vào giấy thi theo hàng dọc; thời gian làm bài 60 phút. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Nam Định : + Gọi S là tập hợp tất cả các số tự nhiên có 19 chữ số lấy từ tập X 6;8 sao cho mỗi số trong tập hợp S phải chứa ít nhất một chữ số 8 và không có bất kì hai chữ số 8 nào đứng cạnh nhau.Tính số phần tử của tập hợp S. + Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 4a, tam giác BCD đều, hình chiếu vuông góc của đỉnh S trên mặt đáy nằm trong hình thoi ABCD, các mặt bên của hình chóp cùng tạo với mặt phẳng đáy góc bằng 45. Tính thể tích của khối nón tạo bởi hình nón có đỉnh S và đáy là hình tròn nội tiếp hình thoi. + Cho hình chóp S.ABCD có đáy là hình vuông; biết khoảng cách từ đỉnh S đến AB và CD lần lượt là 377 và 5; khoảng cách từ S đến mặt đáy bằng 4. Hình chiếu vuông góc H của S xuống mặt đáy nằm trong hình vuông ABCD. Đặt V là thể tích khối chóp S.ABCD. Chọn mệnh đề đúng.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 543, 511, 009, 950. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, góc giữa mặt bên và mặt phẳng đáy là α thoả mãn cos α = 1/3. Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỉ lệ thể tích hai khối đa diện là gần nhất với giá trị nào trong các giá trị sau? + Một khối gỗ hình trụ với bán kính đáy bằng 6 và chiều cao bằng 8. Trên một đường tròn đáy nào đó ta lấy hai điểm A, B sao cho cung AB có số đo 120 độ. Người ta cắt khúc gỗ bởi một mặt phẳng đi qua A, B và tâm của hình trụ (tâm của hình trụ là trung điểm của đoạn nối tâm hai đáy) để được thiết diện như hình vẽ. Biết diện tích S của thiết diện thu được có dạng S = aπ + b3.Tính P = a + b. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;1;1), B(2;0;1) và mặt phẳng (P). Viết phương trình chính tắc của đường thẳng d đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ B đến d lớn nhất.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 - 2021 sở GDĐT Phú Yên
Thứ Ba ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho tam giác nhọn ABC có đường cao AM, trực tâm H. Đường thẳng BH cắt đường tròn đường kính AC tại D, E (BD < BE). Đường thẳng CH cắt đường tròn đường kính AB tại F, G (CF < CG). Đường tròn ngoại tiếp tam giác DMF cắt BC tại điểm thứ hai là N. a) Chứng minh rằng các điểm G, M, N, E cùng thuộc một đường tròn. b) Chứng minh rằng các đường thẳng BF, CD, HN đồng quy. + Cho P(x), Q(x) là các đa thức có hệ số cao nhất bằng 1 và các hệ số đều là số thực và deg P(x) = deg Q(x) = 2020. Chứng minh rằng nếu phương trình P(x) = Q(x) không có nghiệm thực thì phương trình P(x + 2021) = Q(x – 2021) có nghiệm thực. + Cho p là số nguyên tố khác 2; a và b là hai số tự nhiên lẻ sao cho (a + b) chia hết cho p, (a − b) chia hết cho (p – 1). Chứng minh rằng (a^b + b^a) chia hết 2p.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi vòng tỉnh môn Toán THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.