Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 8 một bộ đề thi chọn học sinh giỏi môn Toán năm học 2022 - 2023 tại trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn một số câu hỏi từ Đề thi học sinh giỏi Toán lớp 8 năm 2022 - 2023 trường THCS Hải Hòa: 1. Cho biểu thức A = x^2 + x - 2. a) Nêu điều kiện tồn tại và rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x thoả mãn: x^2 + x = 2. c) Tìm các giá trị x > 0 sao cho biểu thức 6B - A là số nguyên. 2. Cho tam giác ABC nhọn. Các đường cao AE và BF giao nhau tại H. Gọi M là trung điểm của BC. Vẽ đường thẳng a vuông góc với HM cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Kẻ đường thẳng b qua C song song với IK, b cắt AH, AB tại N và D. Chứng minh: NC = ND và HI = HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. 3. Cho hai số dương x, y thỏa mãn: x^2 + y^2 = 12 và 4x + 9y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức Q = xy/(x^2 - 3y^2). Đề thi đầy thách thức này không chỉ giúp các em học sinh rèn luyện kỹ năng Toán mà còn phát triển khả năng tư duy logic và sự sáng tạo trong giải quyết vấn đề. Chúc các em học sinh có kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.