Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021-2022 sở GD&ĐT Thừa Thiên Huế Đề tuyển sinh môn Toán năm 2021-2022 sở GD&ĐT Thừa Thiên Huế Ngày 5 tháng 6 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2021-2022. Đề tuyển sinh lớp 10 môn Toán của sở GD&ĐT Thừa Thiên Huế bao gồm 1 trang với 6 bài toán dạng tự luận, thời gian làm bài 120 phút. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một trong các bài toán trong đề tuyển sinh lớp 10 môn Toán năm 2021-2022 sở GD&ĐT Thừa Thiên Huế: 1. Công ty A đã lên kế hoạch sản xuất 20000 tấm chắn bảo hộ để tặng cho các chốt chống dịch. Nhưng do cải tiến quy trình làm việc và tính khẩn trương, công ty A đã làm được nhiều hơn 300 tấm mỗi ngày so với kế hoạch ban đầu. Vì vậy, họ đã hoàn thành kế hoạch sớm hơn 1 ngày và làm được nhiều hơn 700 tấm so với kế hoạch ban đầu. Nếu số tấm làm ra mỗi ngày là bằng nhau và là số nguyên, hỏi theo kế hoạch ban đầu, mỗi ngày công ty A cần làm bao nhiêu tấm chắn bảo hộ? 2. Trong bài toán này, sinh viên cần chứng minh các phần như tứ giác nội tiếp, tam giác đồng dạng và tính chất của các hình học. 3. Bài toán về thể tích của một khúc gỗ và phần còn lại sau khi bỏ một hình nón bên trong. Sinh viên cần tính toán và xác định thể tích còn lại của khúc gỗ sau khi loại bỏ hình nón. Qua các bài toán trên, thí sinh sẽ phải thể hiện khả năng tư duy logic, tính toán và giải quyết vấn đề một cách logic và có chiều sâu.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Thuận : + Cho Parabol (P): y = -x2 và đường thẳng (d): y = x – 2. a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Gia đình An dự định đi du lịch tại Nha Trang và Huế trong 7 ngày. Biết rằng chi phí trung bình mỗi ngày tại Nha Trang là 2 triệu đồng, còn tại Huế là 3 triệu đồng. Tìm số ngày nghỉ dự định của gia đình An tại mỗi địa điểm, biết số tiền mà họ phải chi cho toàn bộ chuyến đi là 18 triệu đồng. + Cho đường tròn (O) tâm O bán kính R và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn kẻ từ A tiếp xúc với đường tròn tại B, C. Gọi M là điểm thuộc cung lớn BC. Từ M kẻ MH vuông góc BC, MK vuông góc AC, MI vuông góc AB. a) Chứng minh tứ giác MIBH nội tiếp. b) Giả sử AB = 2R. Tính diện tích tứ giác ABOC. c) Chứng minh MI.MK = MH2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Dương : + Tìm tất cả các số nguyên tố p lẻ sao cho 2p4 – p2 + 16 là số chính phương. + Tìm nghiệm nguyên của phương trình 6×2 + 7xy + 2y2 + x + y – 2 = 0. + Cho tam giác đều ABC nội tiếp đường tròn (O), điểm E thuộc cung nhỏ AB của đường tròn (O) (E khác A, E khác B). Đường thẳng AE cắt các tiếp tuyến tại B, C của đường tròn (O) lần lượt tại M, N. a) Chứng minh rằng MB.NC = AB2. b) Gọi F là giao điểm của MC và BN, H là trung điểm BC. Chứng minh rằng ba điểm E, F, H thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ). Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN – Hà Nội : + Giả sử n là số nguyên sao cho 3n3 – 1011 chia hết cho 1008. Chứng minh rằng n – 1 chia hết cho 48. + Cho hai đường tròn (O) và (O’) cố định cắt nhau tại A và B sao cho O nằm ngoài (O’) và O’ nằm ngoài (O). Trên đường tròn (O) lấy điểm P di chuyển sao cho P nằm trong đường tròn (O’). Đường thẳng AP cắt (O’) tại C khác A. 1) Chứng minh rằng hai tam giác OBP và O’BC đồng dạng. 2) Gọi Q là giao điểm của hai đường thẳng OP và O’C. Chứng minh rằng QBC + ABP = 90°. 3) Lấy điểm D thuộc (O) sao cho AD vuông góc O’C. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi P thay đổi. + Giả sử A là tập hợp con của tập hợp gồm 30 số tự nhiên đầu tiên {0, 1, 2, 3, …, 29} sao cho với k nguyên bất kỳ, a, b thuộc A bất kỳ (có thể a = b) thì a + b + 30k không là tích của hai số nguyên liên tiếp. Chứng minh rằng số phần tử của tập hợp A nhỏ hơn hoặc bằng 10.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 04/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Quốc học Huế : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. + Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho.