Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 3 năm 2022 2023 trường Lương Thế Vinh Hà Nội

Nội dung Đề thi thử Toán vào lần 3 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 3 năm 2022 - 2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lớp 10 lần 3 năm 2022 - 2023 trường Lương Thế Vinh Hà Nội Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 3 năm học 2022 - 2023 của trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 07 tháng 05 năm 2022. Trích đề thi thử Toán vào lớp 10 lần 3 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội: - Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Trên một khúc sông, một canô đi xuôi dòng 60 km, sau đó lại chạy ngược dòng 64 km, biết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng 30 phút. Tính vận tốc riêng của canô, biết vận tốc của dòng nước là 4 km/h. - Một bồn chứa xăng trên xe có cấu tạo: hai đầu là hai nửa hình cầu có đường kính là 2,4m , phần thân là một hình trụ có chiều dài 3,4m. Tính thể tích của bồn chứa xăng. (Lấy π ≈ 3,14). - Cho tam giác ... Thông tin chi tiết và đầy đủ của đề thi được cung cấp đến thầy cô và các em học sinh để chuẩn bị tốt nhất cho kỳ thi sắp tới. Mong rằng đề thi sẽ giúp các em củng cố kiến thức và luyện tập hiệu quả. Chúc quý thầy cô và các em học sinh thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT & THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi gồm 02 trang với 08 câu trắc nghiệm (20% tổng số điểm) và 05 câu tự luận (80% tổng số điểm), thời gian làm bài 90 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hậu Giang : + Cho đường tròn O có bán kính R 3 và điểm M sao cho OM R 2. Từ M kẻ hai tiếp tuyến MA MB tới O với A và B là hai tiếp điểm. c) Chứng minh tứ giác MAOB nội tiếp. Tính diện tích S của tứ giác MAOB. d) Lấy điểm C trên đường tròn O sao cho tam giác ABC nhọn AB AC và có các đường cao BE CF. Gọi H là trực tâm tam giác ABC và N J lần lượt là trung điểm của BC AH. Chứng minh tứ giác AJNO là hình bình hành và JEN 90. + Tính chu vi của đường tròn ngoại tiếp tam giác, biết tam giác ABC vuông tại A và BC a 6. + Cho hình thang có đáy lớn BC đáy nhỏ AD AD BC cm AC cm 10 5 2 và ACB 45. Tính diện tích S của hình thang đã cho.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho tam giác ABC AB AC có các góc nhọn nội tiếp đường tròn O R. Các đường cao AK BE CF của tam giác ABC cắt nhau tại H và cắt đường tròn O R tại các điểm lần lượt là MNP (M khác A N khác B P khác C). 1. Chứng minh EF PN. 2. Chứng minh diện tích tứ giác AEOF bằng 2 EF R 3. Tính giá trị của biểu thức AM BN CP AK BE CF 4. Gọi S và Q là chân đường vuông góc kẻ từ điểm K đến các cạnh AB AC. Đường thẳng QS cắt BC tại G, đường thẳng GA cắt đường tròn O R tại điểm J (J khác A). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQS. Chứng minh ba điểm IKJ thẳng hàng. + Cho đường thẳng (d) có phương trình ym xm 2 21 (với m là tham số) và điểm A(−1;2). Tìm tất cả các giá trị của m để khoảng cách từ điểm A đến đường thẳng (d) đạt giá trị lớn nhất. + Cho ba số thực dương abc thỏa mãn 222 a b c ab bc ca 22 0. Chứng minh: 222 2 2 2 2 3 a b c c ab a b abc ab.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho tam giác ABC nhọn AB AC nội tiếp đường tròn (O), các đường cao AD BE CF cắt nhau tại H. Gọi M là trung điểm BC. a) Chứng minh tứ giác DMEF là tứ giác nội tiếp. b) Đường tròn tâm I đường kính AH cắt đường tròn (O) tại điểm thứ hai là P. Kẻ đường kính AK của đường tròn (O). Chứng minh bốn điểm P H M K thẳng hàng. c) Các tiếp tuyến tại A và P của đường tròn (I) cắt nhau ở N. Chứng minh ba đường thẳng MN EF AH đồng quy. + Có tất cả bao nhiêu đa thức P x có bậc không lớn hơn 2 với các hệ số nguyên không âm và thỏa mãn điều kiện P(3) = 100. + Cho phương trình 3 2 x bx cx 1 0 trong đó b c là các số nguyên. Biết phương trình có nghiệm 0 x 2 5. Tìm b c và các nghiệm còn lại của phương trình.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Bắc Giang : + Cho nửa đường tròn O R đường kính AB. Gọi M là một điểm thuộc nửa đường tròn đã cho, H là hình chiếu của M trên AB. Đường thẳng qua O và song song với MA cắt tiếp tuyến tại B của nửa đường tròn O tại điểm K. 1) Chứng minh bốn điểm O B K M cùng thuộc một đường tròn. 2) Gọi C D lần lượt là hình chiếu của H trên các đường thẳng MA và MB. Chứng minh ba đường thẳng CD MH AK đồng quy. 3) Gọi E F lần lượt là trung điểm của AH và BH. Xác định vị trí của điểm M để diện tích tứ giác CDFE đạt giá trị lớn nhất. + Cho chín số nguyên dương 1 2 9 a a a đều không có ước số nguyên tố nào khác 3; 5 và 7. Chứng minh rằng trong chín số đã cho luôn tồn tại hai số mà tích của hai số này là một số chính phương. + Tìm tất cả các giá trị của tham số m để phương trình 3 2 2 2 x m x m m x m m 2 1 2 1 0 có ba nghiệm phân biệt 1 2 3 x x x thỏa mãn 2 2 2 1 2 3 1 2 3 x x x x x x 3 0.