Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm Toán 12 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh

Thứ Sáu ngày 09 tháng 10 năm 2020, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm môn Toán lớp 12 năm học 2020 – 2021. Đề KSCL đầu năm Toán 12 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh với hai mã đề 101 và 102, đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các phần: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các kiến thức trọng tâm thuộc chương trình Toán 11; đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề KSCL đầu năm Toán 12 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong không gian, khẳng định nào sau đây sai? A. Cho trước bốn điểm phân biệt, luôn có duy nhất một mặt phẳng chứa cả bốn điểm đó. B. Cho trước hai điểm phân biệt, luôn có duy nhất một đường thẳng đi qua hai điểm đó. C. Cho trước hai đường thẳng cắt nhau, luôn có duy nhất một mặt phẳng chứa cả hai đường thẳng đó. D. Cho trước hai đường thẳng song song, luôn có duy nhất một mặt phẳng chứa cả hai đường thẳng đó. + Xét các khẳng định sau đây: (1) Chiều cao của một hình chóp luôn bằng độ dài của cạnh bên nhỏ nhất của hình chóp đó. (2) Chiều cao của một hình chóp luôn bằng độ dài của cạnh bên lớn nhất của hình chóp đó. (3) Chiều cao của một hình lăng trụ bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đáy của hình lăng trụ đó. (4) Chiều cao của một hình lăng trụ không lớn hơn độ dài cạnh bên của hình lăng trụ đó. Số khẳng định đúng là? + Cho hình chóp cụt đều, có hai đáy là các hình lục giác đều cạnh bằng 2 và cạnh bằng 4. Chiều cao của hình chóp cụt bằng 2. Tính diện tích toàn phần của hình chóp cụt đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề thi khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát, đánh giá chất lượng giáo dục môn Toán lớp 12 THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình, hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán; đề thi có đáp án trắc nghiệm tất cả các mã đề. Trích dẫn Đề thi khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Cho một mặt cầu và một hình nón nội tiếp trong mặt cầu. Thiết diện qua trục của hình nón là một tam giác nhọn, không đều và diện tích xung quanh của hình nón bằng 3 8 diện tích mặt cầu. Gọi α là góc giữa đường sinh và mặt đáy của hình nón. Biết cosα a b c với a, b, c là các số nguyên dương đôi một nguyên tố cùng nhau. Tổng a + b + c bằng? + Cho hàm số f(x) có đạo hàm trên R thoả mãn f(x) = f0(x) + 2 (3x + 1)ex, ∀x ∈ R và f(1) = −3e. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = 2f(x) và y = f0(x) thuộc khoảng nào dưới đây? + Cho hình chóp S.ABC. Gọi K là điểm thỏa mãn SK = 14SB + 13SC và L là giao điểm của đường thẳng SK với đường thẳng BC. Biết thể tích khối chóp S.ABC bằng 56, thể tích khối chóp S.ABL bằng?
Đề thi khảo sát lớp 12 môn Toán năm 2023 lần 1 trường THPT Thái Phiên Hải Phòng
Nội dung Đề thi khảo sát lớp 12 môn Toán năm 2023 lần 1 trường THPT Thái Phiên Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán lớp 12 năm 2023 lần 1 trường THPT Thái Phiên, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm và lời giải chi tiết mã đề 103. Trích dẫn Đề thi khảo sát Toán lớp 12 năm 2023 lần 1 trường THPT Thái Phiên – Hải Phòng : + Có hai hộp bút chì màu, các bút chì khác nhau. Hộp thứ nhất có bút chì màu 5 đỏ và bút chì 7 màu xanh. Hộp thứ hai có bút chì màu 8 đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để chọn một cây bút chì màu đỏ và một bút chì màu xanh là? + Cho hàm số có ba điểm cực trị là 4 3 2 f x 2x ax bx cx d (a b c d). Gọi là hàm y = g(x) số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường và y = f(x) và y = g(x) bằng? + Cho hàm số y = f(x) xác định và liên tục trên R có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) trên đoạn [-2;2].