Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường chuyên Hà Nội Amsterdam

Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường chuyên Hà Nội Amsterdam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chọn đội tuyển tham gia kỳ thi học sinh giỏi cấp thành phố môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam. Trích dẫn đề chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 trường chuyên Hà Nội – Amsterdam : + Cho đường cong (C) có phương trình y = x3 – 3×2 + 2x – 2022. Với mỗi điểm M thuộc (C), gọi dM là tiếp tuyến của đường cong (C) tại M. Trên (C) lấy điểm M1 có hoành độ xM1 = 2022. Từ điểm M1 ta xây dựng các điểm M2, M3, …, Mn theo quy tắc: điểm Mi+1 (i = 1, 2, …, n – 1 với n thuộc N, n >= 2) là điểm chung thứ hai của dMi (dMi là tiếp tuyến của đường cong (C) tại điểm Mi) với đường cong (C). Gọi xM2, xM3,…, XMn theo thứ tự là hoành độ của các điểm M2, M3, …, Mn. Tìm giá trị nhỏ nhất của n để (f(xMn) + xMn + 2021) chia hết cho 2^2022. + Cho hình lập phương ABCD.A’B’C’D’. Trên các đoạn thẳng BD, AB’ lần lượt lấy các điểm M, N không trùng với các đỉnh của hình lập phương sao cho BM = B’N. Gọi a, b theo thứ tự là số đo góc tạo bởi đường thẳng MN với các đường thẳng BD, AB’. a) Chứng minh rằng cos2a + cos2b = 1/2. b) Xác định vị trí của các điểm M, N sao cho độ dài đoạn thẳng MN ngắn nhất. Khi đó MN có phải đoạn vuông góc chung của hai đường thẳng BD và AB’ không? c) Giả sử các điểm H, K, L (khác điểm A) theo thứ tự di động trên các tia AB, AD, AA’ thỏa mãn. Chứng minh rằng mặt phẳng (HKL) luôn đi qua một điểm cố định khi H, K, L di động thỏa mãn điều kiện trên. + Một kỳ thi học sinh giỏi được diễn ra trong 2 ngày. Điểm đánh giá mỗi ngày dùng k (k > 2) giá trị khác nhau (chẳng hạn với k = 2 thì đánh giá là “đạt” (tức là 1) hoặc “không đạt” (tức là 0); với k = 8 thì điểm số dùng để đánh giá là 0; 1; 2; 3; 4; 5; 6; 7). Hãy xác định số nhiều nhất các học sinh dự thi sao cho có thể xảy ra trường hợp là trong k học sinh tùy ý, luôn có một ngày thi mà kết quả của k học sinh này đôi một khác nhau.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi môn Toán 12 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề thi học sinh giỏi môn Toán 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG Toán 12 dự thi Quốc gia năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi thành lập đội tuyển HSG Toán 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.