Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét

Bài toán giải và biện luận nghiệm phương trình bậc hai cùng với ứng dụng của hệ thức Vi-ét là một trong những nội dung quan trọng bậc nhất trong chương trình Đại số lớp 9, đây là dạng toán xuất hiện trong hầu hết các đề thi tuyển sinh vào lớp 10 môn Toán. Nhằm giúp các em tìm hiểu và ôn tập dạng toán này, THCS. giới thiệu đến các em tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét; tài liệu gồm có 101 trang do tác giả Trịnh Bình sưu tầm và tổng hợp. Khái quát nội dung tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét: Chủ đề 1 . Phương trình bậc hai một ẩn. 1. Kiến thức cần nhớ. 2. Bài tập vận dụng. + Dạng toán 1. Giải phương trình bậc hai một ẩn. + Dạng toán 2. Tìm điều kiện để phương trình bậc hai có nghiệm. + Dạng toán 3. Nghiệm nguyên, nghiệm hữu tỷ của phương trình bậc hai. + Dạng toán 4. Tìm giá trị của m để phương trình có hai nghiệm chung. + Dạng toán 5. Chứng minh trong một hệ các phương trình bậc hai có một phương trình có nghiệm. + Dạng toán 6. Ứng dụng của phương trình bậc hai trong chứng minh bất đẳng thức và tìm GTNN và GTLN. [ads] Chủ đề 2 . Khai thác các ứng dụng của định lý Vi-ét. A. Kiến thức cần nhớ. B. Các ứng dụng của định lý Vi-ét. + Dạng toán 1: Giải phương trình bậc hai bằng cách tính nhẩm nghiệm. + Dạng toán 2: Tính giá trị biểu thức giữa các nghiệm của phương trình. + Dạng toán 3. Tìm hia số khi biết tổng và tích. + Dạng toán 4. Phân tích tam thức tam thức bậc hai thành nhân tử. + Dạng toán 5. Tìm tham số để phương trình bậc hai có một nghiệm x = x1. Tìm nghiệm thứ hai. + Dạng toán 6. Xác định tham số để phương trình có nghiệm thỏa mãn một hệ điều kiện cho trước. + Dạng toán 7. Lập phương trình bậc hai khi biết hai nghiệm của nó hoặc hai nghiệm của nó liên quan đến hai nghiệm của một phương trình đã cho. + Dạng toán 8. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình bậc hai, không phụ thuộc vào tham số. + Dạng toán 9. Chứng minh hệ thức liên hệ giữa các nghiệm của phương trình bậc hai, hoặc hai nghiệm của phương trình bậc hai. + Dạng toán 10. Xét dấu các nghiệm của phương trình bậc hai, so sách các nghiệm của phương trình bậc hai với một số cho trước. + Dạng toán 11. Nghiệm chung của hai hay nhiều phương trình, hai phương trình tương đương. + Dạng toán 12. Ứng dụng của hệ thức Vi-ét các bài toán số học. + Dạng toán 13. Ứng dụng của hệ thức Vi-ét giải phương trình, hệ phương trình. + Dạng toán 14. Ứng dụng hệ thức vi-ét chứng minh đẳng thức, bất đẳng thức, tìm GTLN và GTNN. + Dạng toán 15. Vận dụng định lý Vi-ét vào các bài toán hàm số. + Dạng toán 16. Ứng dụng địng lý Vi-ét trong các bài toán hình học. Bài tập rèn luyện tổng hợp. Hướng dẫn giải. Bài tập không lời giải.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Nội dung Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ Bản PDF - Nội dung bài viết Chuyên đề về hình trụ, diện tích xung quanh và thể tích Chuyên đề về hình trụ, diện tích xung quanh và thể tích Chuyên đề này bao gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức quan trọng về hình trụ, diện tích xung quanh và thể tích của hình trụ. Nó cung cấp phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm liên quan đến chuyên đề này, nhằm hỗ trợ học sinh trong quá trình học tập chương trình hình học cấp 2, đặc biệt là chương 3 bài số 1. A. Trọng tâm cơ bản cần đạt: I. Tóm tắt lý thuyết: Cho hình trụ có bán kính đáy R và chiều cao h, ta có các công thức sau: Diện tích xung quanh: Sxq = 2πRh. Diện tích đáy: S = πR^2. Diện tích toàn phần: Stp = 2πRh + 2πR^2. Thể tích: V = πR^2h. II. Bài tập và các dạng toán: Dạng 1: Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Sử dụng các công thức để tính toán các giá trị cần tìm. Dạng 2: Bài tập tổng hợp. Phương pháp giải: Kết hợp kiến thức về hình học phẳng và công thức về hình trụ để giải bài tập. III. Bài tập cơ bản về nhà B. Nâng cao phát triển tư duy C. Trắc nghiệm rèn luyện phản xạ D. Tự luyện cơ bản và nâng cao
Chuyên đề diện tích hình tròn, hình quạt tròn
Nội dung Chuyên đề diện tích hình tròn, hình quạt tròn Bản PDF - Nội dung bài viết Chuyên đề diện tích hình tròn, hình quạt tròn Chuyên đề diện tích hình tròn, hình quạt tròn Tài liệu này gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức trọng tâm về diện tích hình tròn và hình quạt tròn. Nó cung cấp phân loại dạng bài tập tự luận và trắc nghiệm, hướng dẫn chi tiết cách giải, giúp học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. I. Trọng tâm cơ bản cần đạt: - Công thức diện tích hình tròn: S = πR^2, với R là bán kính của hình tròn. - Công thức diện tích hình quạt tròn: S = πR^2n/360 hoặc S = lR/2 (là độ dài cung n0 của hình quạt tròn). II. Bài tập và các dạng toán: - Dạng 1: Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Sử dụng công thức và kiến thức đã học. - Dạng 2: Bài toán tổng hợp. Phương pháp giải: Tính góc ở tâm, bán kính đường tròn để tính diện tích hình tròn và quạt tròn. III. Bài tập cơ bản về nhà, nâng cao và phát triển tư duy. IV. Trắc nghiệm rèn luyện phản xạ, tự luyện cơ bản và nâng cao. Tài liệu này cung cấp cách giải chi tiết, từ cơ bản đến nâng cao, giúp học sinh hiểu rõ hơn về diện tích hình tròn và hình quạt tròn, từ đó có thể áp dụng linh hoạt vào việc giải các bài tập và bài toán liên quan.
Chuyên đề độ dài đường tròn, cung tròn
Nội dung Chuyên đề độ dài đường tròn, cung tròn Bản PDF - Nội dung bài viết Chuyên Đề Độ Dài Đường Tròn, Cung TrònTrọng Tâm Cơ Bản Cần ĐạtBài Tập và Các Dạng ToánBài Tập Cơ Bản Về NhàNâng Cao Phát Triển Tư DuyTrắc Nghiệm Rèn Luyện Phản XạPhiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Chuyên Đề Độ Dài Đường Tròn, Cung Tròn Tài liệu này bao gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân loại dạng bài tập tự luận và trắc nghiệm về chuyên đề độ dài đường tròn, cung tròn. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. Đây là những kiến thức cơ bản mà học sinh cần nắm vững: Trọng Tâm Cơ Bản Cần Đạt Tóm Tắt Lý Thuyết: Bao gồm công thức tính độ dài đường tròn (chu vi đường tròn) và cung tròn. Học sinh sẽ học cách tính toán chu vi đường tròn và độ dài cung tròn dựa trên bán kính và góc quay. Bài Tập và Các Dạng Toán Dạng 1: Học sinh sẽ được yêu cầu tính độ dài đường tròn và cung tròn bằng cách áp dụng công thức đã học trong phần lý thuyết. Dạng 2: Đây là một số bài toán tổng hợp đòi hỏi học sinh kết hợp kiến thức đã học để giải quyết. Bài Tập Cơ Bản Về Nhà Học sinh sẽ được giao bài tập cơ bản về nhà để đảm bảo họ nắm chắc kiến thức cơ bản. Nâng Cao Phát Triển Tư Duy Phần này sẽ giúp học sinh mở rộng kiến thức và phát triển tư duy toán học thông qua các bài toán mở rộng và ứng dụng kiến thức đã học. Trắc Nghiệm Rèn Luyện Phản Xạ Phần này hỗ trợ học sinh rèn luyện kỹ năng tư duy nhanh, phản xạ thông qua việc giải trắc nghiệm. Phiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Học sinh sẽ được cung cấp phiếu bài tập tự luyện để tự kiểm tra kiến thức cơ bản và nâng cao của mình.
Chuyên đề tứ giác nội tiếp
Nội dung Chuyên đề tứ giác nội tiếp Bản PDF - Nội dung bài viết Chuyên đề tứ giác nội tiếpTrọng tâm cơ bản cần đạtNâng cao phát triển tư duy Chuyên đề tứ giác nội tiếp Tài liệu này bao gồm 38 trang, được viết bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức quan trọng, phân loại và hướng dẫn cách giải các dạng bài tập tự luận & trắc nghiệm về chuyên đề tứ giác nội tiếp. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 9, chương 3, bài số 7. Trọng tâm cơ bản cần đạt 1. Tóm tắt lý thuyết: - Định nghĩa tứ giác nội tiếp. - Định lí về tứ giác nội tiếp. - Một số dấu hiệu nhận biết tứ giác nội tiếp. 2. Bài tập và các dạng toán: - Dạng 1: Chứng minh tứ giác nội tiếp bằng cách sử dụng các phương pháp như chứng minh tổng hai góc đối bằng 180°, chứng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α, chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện, hoặc tìm một điểm cách đều bốn đỉnh của tứ giác. - Dạng 2: Sử dụng tứ giác nội tiếp để chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau, các đường thẳng song song hoặc đồng quy, các tam giác đồng dạng. 3. Bài tập về nhà và phiếu bài tập tự luyện cơ bản và nâng cao. Nâng cao phát triển tư duy Tài liệu này giúp học sinh phát triển tư duy logic, sáng tạo và kỹ năng giải quyết vấn đề thông qua việc áp dụng kiến thức về tứ giác nội tiếp vào các bài toán phức tạp. Với cách trình bày dễ hiểu và linh hoạt, tài liệu này sẽ giúp học sinh nắm vững kiến thức về tứ giác nội tiếp và rèn luyện kỹ năng giải bài tập một cách chính xác và logic.