Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 3 Toán 12 năm 2020 - 2021 trường THPT Yên Lạc - Vĩnh Phúc

Thứ Hai ngày 01 tháng 02 năm 2021, trường THPT Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh lớp 12 năm học 2020 – 2021 lần thứ ba, kỳ thi nhằm rèn luyện kiến thức thường xuyên để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021. Đề KSCL lần 3 Toán 12 năm 2020 – 2021 trường THPT Yên Lạc – Vĩnh Phúc được biên soạn theo dạng đề trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 901. Trích dẫn đề KSCL lần 3 Toán 12 năm 2020 – 2021 trường THPT Yên Lạc – Vĩnh Phúc : + Lớp 12A1 có 40 học sinh gồm 25 học sinh nam và 15 học sinh nữ. Có bao nhiêu cách chọn ra 2 học sinh của lớp 12A1 sao cho trong 2 học sinh chọn ra có 1 học sinh nam và 1 học sinh nữ? + Cho hình trụ có chiều cao bằng 5a, cắt hình trụ bởi mặt phẳng song song với trục và cách trục một khoảng bằng 3a được thiết diện có diện tích bằng 20a2. Thể tích của khối trụ bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AD, SC. Điểm I là giao điểm của BM và AC. Tính tỷ số thể tích của hai khối chóp ANIB và S.ABCD.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Thành Nhân TP HCM
Nội dung Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Thành Nhân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 4 năm học 2020 – 2021 trường THPT Thành Nhân – thành phố Hồ Chí Minh; đề thi có đáp án mã đề 101. Trích dẫn đề KSCL Toán lớp 12 lần 4 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Cho đồ thị hàm số 3 2 6 5 y f x ax bx cx cắt đường thẳng d y g x tại ba điểm A B C với xA 3, yB 0, xC 3 như hình vẽ. Gọi H K lần lượt là hình chiếu của A C lên trục Ox. Biết rằng 169 25 ABH BCK S S và diện tích phần hình phẳng (tô đậm) giới hạn bởi đồ thị y f x y g x x x B x 3 là 775 972 S. Giá trị f(4) bằng? + Cho hình nón có đỉnh S và chiều cao bằng a 2. Lấy hai điểm M N nằm trên đường tròn đáy sao cho tam giác SMN là tam giác đều và có diện tích bằng 2 3 3 4 a (tham khảo hình vẽ). Mặt phẳng SMN chia mặt xung quanh nón thành hai phần. Tính diện tích phần bề mặt xung quanh của hình nón có đáy là cung nhỏ MN (phần tô đậm). + Trong không gian Oxyz, cho hai điểm A(4;5;1), B(12;-1;5) và mặt phẳng 10 0 P z. Xét mặt cầu S đi qua điểm A, đồng thời tiếp xúc cả hai mặt phẳng P và Oxy. Lấy điểm M nằm trên mặt cầu S. Độ dài đoạn thẳng BM ngắn nhất bằng? File WORD (dành cho quý thầy, cô):