Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng

Nội dung Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng sẽ diễn ra vào ngày 10 tháng 11 năm 2022. Một số câu hỏi thú vị trong đề thi: 1. Một con Robot được thiết kế để di chuyển theo quy tắc cố định. Nếu robot xuất phát từ vị trí A0 và đi theo quy luật cụ thể để đến vị trí A2022, hỏi khoảng cách giữa điểm xuất phát và điểm đến của con Robot là bao nhiêu? 2. Một đoàn từ thiện phát 22 quyển vở cho các học sinh có hoàn cảnh khó khăn. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà mà vẫn còn thừa 1 quyển. Hỏi đoàn từ thiện ban đầu có bao nhiêu quyển vở, biết rằng mỗi phần quà không quá 30 quyển? 3. Cho tam giác vuông ABC có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh rằng chiều cao hình thang tam giác AHCK bằng nửa tổng các cạnh góc vuông AC và BC. Chúc các em học sinh sẵn sàng và tự tin để làm bài thi tốt nhất!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Cho tam giác ABC vuông tại A có đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và BD tại M. Hệ thức nào sau đây đúng? + Sau buổi sinh hoạt ngoại khóa, nhóm của Hằng rủ nhau đi ăn kem. Do quán mới khai trương nên có khuyến mại, bắt đầu từ ly kem thứ 5 giá mỗi ly kem được giảm 1500 (đồng) so với giá ban đầu. Nhóm của Hằng mua 9 ly kem với số tiền là 154 500 (đồng). Hỏi nếu nhóm của Hằng mua 15 ly kem thì hết bao nhiêu tiền? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O; R), đường kính AK. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại hai điểm P, Q (P và C nằm khác phía đối với AB). Gọi M là trung điểm của BC. a) Chứng minh: Tứ giác BHCK là hình bình hành và OAC BAH. b) Chứng minh: 2 2 AP AQ 2AD OM. c) Khi BC cố định và A di động trên đường tròn (O). Chứng minh đường thẳng đi qua H và song song với AO luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT : + Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Gọi H là trực tâm tam giác ABC và M là trung điểm đoạn thẳng BC. Tia MH cắt (O) tại E, tia ED cắt (O) tại S. 1. Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 2. Chứng minh AB/AC = SB/SC. 3. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 4. Chứng minh các đường thẳng DT, AM, HO đồng quy. + Cho 2024 phân số gồm 1/2024; 2/2024 … 2024/2024. Mỗi lần thực hiện ta xoá đi hai số a; b bất kỳ trong dãy trên và thay vào đó số a + b – 4ab. Cứ làm như vậy đến khi còn duy nhất một số. Hãy tìm số đó.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho parabol 1 2 2 Py x và hai điểm A B 2 2 4 8 nằm trên (P). Gọi M là điểm thay đổi trên (P) và có hoành độ là m m 2 4. Tìm m để tam giác ABM có diện tích lớn nhất. + Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thỏa mãn tam giác ABC nhọn. Các đường thẳng CA CB cắt đường tròn (O) tại điểm thứ hai tương ứng là D E. Trên cung AB của (O) không chứa D lấy điểm F (0 FA FB). Đường thẳng CF cắt AB tại M cắt đường tròn O tại N (N không trùng với F) và cắt đường tròn (O’) ngoại tiếp tam giác CDE tại P (P không trùng với C). a) Giả sử 0 ACB 60 tính DE theo R. b) Chứng minh CN CF CP CM. c) Gọi I H theo thứ tự là hình chiếu vuông góc của F trên các đường thẳng BD AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB BD AD FH FI FK đạt giá trị nhỏ nhất. + Cho góc nhọn xOy cố định và A là điểm cố định trên Ox. Đường tròn (I) thay đổi nhưng luôn tiếp xúc với Ox Oy lần lượt tại E D. Gọi AF là tiếp tuyến thứ hai kẻ từ A đến (I) (F là tiếp điểm). Chứng minh DF luôn đi qua một điểm cố định.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho A là tập hợp gồm 6 sản phẩm bất kì của tập hợp X x 0 14. Chứng minh rằng tồn tại hai tập con 1 2 B B của tập hợp A (1 2 B B khác nhau và khác rỗng) sao cho tổng các phần tử của tập B1 bằng tổng các phẩn tử của tập B2. + Cho hình thang ABCD AB CD AB CD. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh rằng đường thẳng EF đi qua trung điểm của hai đáy AB, CD. + Cho tam giác nhọn ABC D E F lần lượt là các điểm trên các cạnh BC, CA, AB. Nối AD, BE, CF. AD cắt CF và BE lần lượt tại G và I, CF cắt BE tại H. Chứng minh rằng nếu diện tích của bốn tam giác AFG, IHG, BID, CEH bằng nhau thì các diện tích của ba tứ giác AGHE, BIGF, CHID cũng bằng nhau.