Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm 2018 2019 lớp 12 môn Toán trường THPT Lê Văn Thịnh Bắc Ninh

Nội dung Đề KSCL đầu năm 2018 2019 lớp 12 môn Toán trường THPT Lê Văn Thịnh Bắc Ninh Bản PDF Đề KSCL đầu năm 2018 – 2019 môn Toán lớp 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán lớp 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán lớp 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 12 lần 1 năm 2023 - 2024 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 lần 1 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào sáng thứ Tư ngày 28 tháng 02 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 12 lần 1 năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Cho lăng trụ ABC.A’B’C’ có chiều cao bằng 6 và đáy là tam giác đều cạnh bằng 4. Gọi M, N, P lần lượt là tâm các mặt bên ABB’A’, ACC’A’, BCC’B’. Thể tích khối đa diện lồi có các đỉnh là các điểm A, B, C, M, N, P bằng? + Cho hai số thực dương a, b thỏa mãn. Giá trị nhỏ nhất của biểu thức P được viết dưới dạng x – ylog3z với x, y, z là các số nguyên dương lớn hơn 2. Khi đó tổng (x + 2y + z)2 có giá trị bằng? + Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng 2500 năm trước Công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao là 147 m, cạnh đáy là 230 m. Thể tích của nó là?
Đề thi tháng lần 2 Toán 12 năm 2023 - 2024 trường THPT Ngô Sĩ Liên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8?
Đề khảo sát Toán 12 lần 1 năm 2023 - 2024 trường THPT Nguyễn Trãi - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 1 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Thanh Hóa; đề thi có đáp án MÃ 101 MÃ 102 MÃ 103 MÃ 104 MÃ 105 MÃ 106 MÃ 107 MÃ 108. Trích dẫn Đề khảo sát Toán 12 lần 1 năm 2023 – 2024 trường THPT Nguyễn Trãi – Thanh Hóa : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi 1 S là tổng diện tích của ba quả bóng bàn 2 S là diện tích xung quanh của hình trụ. Tỉ số 1 2 S S bằng? + Một nhóm học sinh dựng lều khi đi dã ngoại bằng cách gấp đôi tấm bạt hình chữ nhật có chiều dài 12 m, chiều rộng 6 m (gấp theo đường trong hình minh hoạ) sau đó dùng hai cái gậy có chiều dài bằng nhau chống theo phương thẳng đứng vào hai mép gấp. Hãy tính xem khi dùng chiếc gậy có chiều dài bằng bao nhiêu thì không gian trong lều là lớn nhất. + Cho hình vuông ABCD có các đỉnh ABC tương ứng nằm trên các đồ thị của các hàm số log 2log 3log aaa y xy xy x. Biết rằng diện tích hình vuông bằng 36, cạnh AB song song với trục hoành. Khi đó a bằng?
Đề khảo sát lần 1 Toán 12 năm 2023 - 2024 trường THPT Thiệu Hóa - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng (KSCL) lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Thiệu Hóa, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án mã đề Mã 121 Mã 122 Mã 123 Mã 124 Mã 125 Mã 126. Trích dẫn Đề khảo sát lần 1 Toán 12 năm 2023 – 2024 trường THPT Thiệu Hóa – Thanh Hóa : + Cho tứ diện OABC có OA OB OC và OA OB OC đôi một vuông góc. Gọi MNP lần lượt là trung điểm của AB BC và CA biết rằng thể tích của khối tứ diện OMNP bằng 9, diện tích của mặt cầu đi qua 4 điểm OABC bằng? + Một chất điểm A xuất phát từ O chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật 1 11 2 180 18 vt m s trong đó t là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng 2 am s (a là hằng số). Sau khi B xuất phát được 10 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng? + Cho hai hình vuông ABCD và ABEF cạnh a lần lượt thuộc hai mặt phẳng vuông góc với nhau. Gọi G là điểm sao cho tam giác GEF vuông cân tại G, hai mặt phẳng (ABCD) và (GEF) song song, G và C nằm cùng phía so với mặt phẳng (ABEF). Thể tích của khối đa diện ABCDGEF bằng?