Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2024 môn Toán

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tham khảo kỳ thi tốt nghiệp Trung học Phổ thông năm 2024 môn Toán; đề thi được Bộ Giáo dục và Đào tạo công bố vào thứ Năm ngày 21 tháng 03 năm 2024. Đề thi gồm 05 trang, hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Đáp án và lời giải chi tiết của đề thi sẽ được cập nhật trong thời gian sắp tới. Trích dẫn Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2024 môn Toán : + Một vật trang trí có dạng một khối tròn xoay được tạo thành khi quay miền (R) (phần gạch chéo trong hình vẽ bên) quanh trục AB. Miền (R) được giới hạn bởi các cạnh AB, AD của hình vuông ABCD và các cung phần tư của các đường tròn bán kính bằng 1 cm với tâm lần lượt là trung điểm của các cạnh BC, AD. Tính thể tích của vật trang trí đó, làm tròn kết quả đến hàng phần mười. + Cho hàm số y = f(x) có đạo hàm f'(x) = x2 – 3x – 4 với mọi x thuộc R. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m, hàm số g(x) = f(-x3 + 3×2 + m) có đúng hai điểm cực trị thuộc khoảng (1;4)? + Trong không gian Oxyz, cho hình nón (N) có đỉnh A(2; 3; 0), độ dài đường sinh bằng 5 và đường tròn đáy nằm trên mặt phẳng (P): 2x + y + 2z – 1 = 0. Gọi (C) là giao tuyến của mặt xung quanh của (N) với mặt phẳng (Q): x – 4y + z + 4 = 0 và M là một điểm di động trên (C). Hỏi giá trị nhỏ nhất của độ dài đoạn thẳng AM thuộc khoảng nào dưới đây?

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán
Nội dung Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Tài liệu hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán là tập sách gồm 98 trang, được biên soạn bởi tác giả Trần Minh Quang. Tài liệu tập trung vào việc hướng dẫn cách giải các bài toán vận dụng cao (VDC) trong các đề thi thử tốt nghiệp THPT năm 2022 môn Toán. Một trong những bài toán được trích dẫn từ tài liệu là bài toán về một bình thủy tinh hình trụ, trong đó người ta đổ nước và đặt lên miệng bình một khối lập phương đặc. Sau quá trình thử nghiệm, ta phải tính toán để xác định thể tích của bình thủy tinh. Bài toán khác liên quan đến việc tìm giá trị nhỏ nhất của biểu thức trong một hệ phương trình phức tạp. Ngoài ra, còn có bài toán liên quan đến tính thể tích của khối lăng trụ trong không gian. Tài liệu này cung cấp một cách tiếp cận chi tiết và cụ thể cho việc giải các bài toán VDC trong các đề thi thử TN THPT 2022 môn Toán. Với sự phong phú về nội dung và cách trình bày, tài liệu sẽ giúp học sinh nắm vững kỹ năng giải toán một cách chính xác và hiệu quả.