Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải các dạng toán hàm số lượng giác và phương trình lượng giác

Tài liệu gồm 118 trang, bao gồm tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán thường gặp và bài tập các chủ đề trong chương trình Đại số và Giải tích 11 chương 1: hàm số lượng giác và phương trình lượng giác. Nội dung tài liệu hướng dẫn giải các dạng toán hàm số lượng giác và phương trình lượng giác: Chủ đề 1 . Công thức lượng giác cần nắm. Chủ đề 2 . Hàm số lượng giác. + Dạng toán 1. Tìm tập xác định của hàm số lượng giác. + Dạng toán 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. + Dạng toán 3. Xét tính chẵn lẻ của hàm số lượng giác. [ads] Chủ đề 3 . Phương trình lượng giác. + Dạng toán 1. Sử dụng thành thạo cung liên kết. + Dạng toán 2. Ghép cung thích hợp để áp dụng công thức tích thành tổng. + Dạng toán 3. Hạ bậc khi gặp bậc chẵn của sin và cos. + Dạng toán 4. Xác định nhân tử chung để đưa về phương trình tích. + Dạng toán 5. Phương trình lượng giác đưa về bậc hai và bậc cao cùng một hàm lượng giác. + Dạng toán 6. Phương trình bậc nhất đối với sin và cos. + Dạng toán 7. Phương trình lượng giác đẳng cấp (bậc 2, bậc 3, bậc 4). + Dạng toán 8. Phương trình lượng giác đối xứng. + Dạng toán 9. Một số phương trình lượng giác khác. + Dạng toán 10. Phương trình lượng giác có cách giải đặc biệt. Chủ đề 4 . Bài tập ôn cuối chương I.

Nguồn: toanmath.com

Đọc Sách

Bài thơ, bài vè, mẹo học nhanh công thức lượng giác
Bộ sưu tập một số mẹo học nhanh công thức Lượng Giác bằng cách sử dụng nghệ thuật thơ dân gian. Mặc dù các bài thơ không bao giờ là cách học công thức hiệu quả nhất, song những vần nhịp và sắc thái dân gian của nó cũng là một phương pháp ghi nhớ đáng để nghiên cứu và phát triển. 1. Định nghĩa giá trị lượng giác 2. Giá trị LG thông dụng 3. Tính chất 3.1. Cung liên kết 3.2. Dấu [ads] 4. Công thức LG 4.1. Công thức cộng 4.2. Công thức biến tích thành tổng 4.3. Công thức biến tổng thành tích 4.4. Công thức nhân ba 4.5. Đẳng thức LG trong tam giác 4.6. Bốn công thức tổng quát hữu dụng
Hướng dẫn sử dụng máy tính cầm tay giải phương trình bậc nhất theo SIN và COS - Dương Trác Việt
Trên cả ba phương diện tự luận, bán tự luận – điền khuyết và trắc nghiệm, bài viết đề cập quá trình tư duy, thao tác bấm máy và cách trình bày khi giải quyết các phương trình lượng giác cổ điển đối với sine và cosine. Tùy vào hình thức kiểm tra đánh giá và mức độ phức tạp của đề bài mà việc sử dụng máy tính cầm tay sẽ hỗ trợ một phần hoặc toàn bộ quá trình tìm ra phương án. Với dạng thức điền khuyết, tối ưu hóa con đường tự luận bằng cách dùng công thức hệ quả là một hướng tiếp cận an toàn nhưng tạo thêm áp lực ghi nhớ cho người học. Ở một phương diện khác, phương pháp Newton – Raphson có vẻ như khắc phục hoàn toàn hạn chế nói trên lại đòi hỏi tư duy linh hoạt trong xử lý khoảng chứa nghiệm – vốn còn khá lạ lẫm với đa số học sinh đại trà. [ads] Ở những câu hỏi trắc nghiệm khó, thí sinh cần trang bị thêm kỹ năng chuẩn hóa họ nghiệm và loại bỏ các nghiệm thuộc cùng một họ để vượt qua phương án nhiễu và xác định phương án đúng. Bên cạnh đó, năng lực “quy lạ về quen” cũng là cứu cánh trước những dạng bài tập mà các em chưa gặp bao giờ, vì thế cần phải tôi luyện kỹ. Nhìn chung, học sinh nên cân nhắc việc sử dụng máy tính cầm tay một cách hợp lý, tránh phụ thuộc hoàn toàn vào công cụ này. Đồng thời giáo viên cũng cần quan tâm đúng mức đến vấn đề tối ưu hóa cách giải tự luận theo định hướng trắc nghiệm khách quan nhằm đáp ứng thực tiễn bối cảnh hiện nay.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Huỳnh Đức Khánh
Tài liệu gồm 65 trang với nội dung gồm: Bài 1. Hàm số lượng giác + Vấn đề 1. Tập xác định + Vấn đề 2. Tính chẵn lẻ + Vấn đề 3. Tính tuần hoàn + Vấn đề 4. Tính đơn điệu + Vấn đề 5. Đồ thị của hàm số lượng giác + Vấn đề 6. Giá trị lớn nhất – Giá trị nhỏ nhất [ads] Bài 2. Phương trình lượng giác cơ bản Bài 3. Một số phương trình lượng giác thường gặp + Vấn đề 1. Phương trình bậc nhất đối với một hàm số lượng giác + Vấn đề 2. Phương trình bậc nhất đối với sinx và cosx + Vấn đề 3. Phương trình bậc hai đối với một hàm số lượng giác + Vấn đề 4. Phương trình bậc nhất đối với sinx và cosx + Vấn đề 5. Phương trình chứa sinx +- cosx và sinxcosx
Phương pháp phân tích thành nhân tử trong việc giải phương trình lượng giác - Trần Thông
Phương trình lượng giác là vấn đề quan trọng và quen thuộc trong chương trình toán học bậc THPT cũng như trong các đề thi tuyển sinh đại học. Việc giải thành thạo phương trình lượng giác đã trở thành nhiệm vụ và cũng là mong muốn của mọi học sinh. Tuy nhiên, sự phong phú của công thức lượng giác đã gây khó khăn cho học sinh trong việc định hướng lời giải. Nếu định hướng không tốt sẽ dẫn đến biến đổi vòng vo, không giải được hoặc lời giải sẽ dài dòng, không đẹp. Cản trở này phần nào làm nản chí các em học sinh. Một số em đã sợ học và xác định bỏ phần phương trình lượng giác. Với mong muốn giúp học sinh khắc phục khó khăn này, tôi viết bài viết này. Bài viết đưa ra một số định hướng biến đổi phương trình dựa trên những dấu hiệu đặc biệt. Nhờ đó học sinh nhanh chóng tìm ra lời giải của bài toán, tiết kiệm thời gian, tự tin hơn trước các phương trình lượng giác. Bài viết được chia thành ba phần: [ads] + Phần A: Trình bày sự cần thiết và nội dung bài viết + Phần B: Nội dung bài viết, phần này chia thành các mục nhỏ dưới đây I. Nhận dạng nhân tử chung dựa vào đẳng thức cơ bản II. Phương trình bậc 2 đối với sinx, cosx III. Nhẩm nghiệm đặc biệt để xác định nhân tử chung IV. Sử dụng công thức đặc biệt V. Thay thế hằng số bằng đẳng thức lượng giác + Phần C: Trình bày một số bài tập tương tự.