Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 lớp 9 môn Toán năm 2023 2024 trường Trần Quốc Toản Bắc Ninh

Nội dung Đề khảo sát lần 2 lớp 9 môn Toán năm 2023 2024 trường Trần Quốc Toản Bắc Ninh Bản PDF Đề khảo sát lần 2 môn Toán lớp 9 năm 2023 - 2024 trường Trần Quốc Toản Bắc Ninh

Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 2 môn Toán năm học 2023 - 2024 của trường TH & THCS Trần Quốc Toản, Bắc Ninh. Đề thi bao gồm 40 câu trắc nghiệm (tổng cộng 4 điểm, thời gian làm bài 50 phút) và 4 câu tự luận (tổng cộng 6 điểm, thời gian làm bài 70 phút), đề có kèm đáp án, lời giải chi tiết và hướng dẫn cách chấm điểm.

Một số câu hỏi mẫu trong đề khảo sát lần 2 Toán lớp 9 năm 2023 - 2024 tại trường Trần Quốc Toản Bắc Ninh:

1. Cho tam giác ABC vuông tại A có AB = x cm, AC = 3/4x cm. Tính độ dài các đoạn thẳng BC, AH và HC.
2. Gọi E và F lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 2AE = AB, AF = AC, EF.
3. Có bao nhiêu cặp số nguyên a, b để biểu thức (93^2)3 được viết dạng 2^a x 3^b.
4. Tổng của hai số tự nhiên bằng 19. Tích của hai số đó có giá trị lớn nhất là bao nhiêu?

Quý thầy cô giáo và các em học sinh có thể tải file Word chứa đề thi và đáp án từ link được cung cấp để ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý vị thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS An Nhơn - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS An Nhơn, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 16 tháng 11 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS An Nhơn – Lâm Đồng : + Lúc đồng hồ ở nhà chỉ 8h, A rời nhà để ra bến xe buýt. Khi vừa tới bến, A phát hiện bị quên đồ nên lập tức quay về nhà lấy, lúc này đồng hồ ở bến xe chỉ 8h05. Theo đồng hồ ở nhà, A quay lại nhà lúc 8h18. Biết vận tốc di chuyển của A không đổi. Cho biết đồng hồ nhà A nhanh hay chậm hơn đồng hồ ở bến xe? Chênh lệch là bao nhiêu phút? + Một chiếc máy bay đang bay lên với tốc độ 60km/h, đường bay tạo với phương nằm ngang một góc 30 độ. Hỏi sau 1 phút máy bay lên cao thêm được bao nhiêu km theo phương thẳng đứng. + Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. a) Tính AH nếu biết BH = 9cm và BC = 25cm. b) Gọi M, N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: AM.AB = AH.AC.cosHAC.
Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Chương Mỹ – Hà Nội : + Cho biểu thức: A. 1) Rút gọn biểu thức A. 2) Tìm tất cả các giá trị của x để A nhận giá trị nguyên. 3) Tìm giá trị nhỏ nhất của biểu thức: B = A.(x + 16)/5. + Cho biểu thức E = a3/24 + a2/8 + a/12 với a là một số tự nhiên chẵn. Hãy chứng tỏ E có giá trị nguyên. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC), trên HC lấy D sao cho HA = HD, đường thẳng vuông góc với BC tại D cắt AC tại E. a) Chứng minh: CE.CA = CD.CB. b) Giả sử AB = a, tính BE theo a. c) Gọi M là trung điểm của BE, chứng minh BHM và BEC đồng dạng. HM là phân giác của AHC. d) Tia AM cắt BC tại G. Chứng minh: GB/BC = HD/(AH + HC).
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho tam giác ABC vuông tại A AB AC có đường cao AH H BC. Trên tia HC lấy điểm D thỏa mãn HD HA. Đường thẳng qua D song song với AH cắt AC tại E. Chứng minh tam giác ADC đồng dạng với tam giác BEC và tính độ dài BC khi AE EC 6 cm 2 cm. + Cho hình vuông ABCD, điểm N thuộc cạnh CD thỏa mãn NC ND 2. Gọi H là giao điểm của AN với BD và M là trung điểm BC. Chứng minh tam giác AHM vuông cân. + Cầu thang đi từ tầng một lên tầng hai của một ngôi nhà được thiết kế liên tục một nhịp với 21 bậc, mỗi bậc có chiều cao và chiều rộng mặt bậc bằng nhau (Ảnh bên). Biết chiều cao từ mặt sàn tầng một đến mặt sàn tầng hai là 3,57m và chiều rộng của mỗi mặt bậc là 25cm. Hỏi vị trí bắt đầu xây cầu thang ở mặt sàn tầng một cách ví trí chân tường xây chắn tại cuối cầu thang bao nhiêu mét và cầu thang dài bao nhiêu mét?