Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp trường lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Bình Sơn Vĩnh Phúc

Nội dung Đề HSG cấp trường lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Bình Sơn Vĩnh Phúc Bản PDF Đề HSG cấp trường lớp 10 môn Toán lần 2 năm 2022-2023 tại trường THPT Bình Sơn Vĩnh Phúc là một cơ hội để các em học sinh thử sức và khẳng định kiến thức của mình trong môn Toán. Đề thi bao gồm 50 câu hỏi và bài toán, được thiết kế hoàn toàn dưới dạng trắc nghiệm và có đáp án đi kèm để các em có thể tự kiểm tra và đánh giá kết quả của mình.

Một số câu hỏi trong đề thi mẫu có thể đảm bảo độ phong phú và thách thức cho các em như: đề thi có mệnh đề sai nào, tính số đơn vị vitamin mỗi loại cần dùng để chi phí rẻ nhất, tính tổng độ dài của dây cáp treo trên cầu treo Parabol ACB. Các câu hỏi này không chỉ yêu cầu kiến thức cơ bản mà còn đòi hỏi sự sáng tạo, logic và khả năng áp dụng kiến thức vào thực tế của học sinh.

Đề thi HSG môn Toán lần 2 là cơ hội tốt để các em học sinh có thể rèn luyện và nâng cao kỹ năng giải quyết vấn đề, tư duy logic và làm việc nhóm. Hy vọng rằng qua bài kiểm tra này, các em sẽ có cơ hội phát triển bản thân và chuẩn bị tốt cho những kỳ thi quan trọng trong tương lai. Chúc các em thành công và chinh phục mọi thách thức trong học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.