Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu ôn tập thi THPT Quốc gia 2018 môn Toán - Sở GD và ĐT Tuyên Quang

Tài liệu ôn tập thi THPT Quốc gia theo định hướng phát triển năng lực học sinh năm học 2017 – 2018 môn Toán của sở GD và ĐT Tuyên Quang gồm 443 trang. Tài liệu ôn tập được xây dựng theo các chủ đề, chuyên đề Toán của cả lớp 11 và lớp 12, mỗi chủ đề, chuyên đề bao gồm các phần: Kiến thức cơ bản, luyện tập và các câu hỏi trắc nghiệm. Nội dung tài liệu : Ứng dụng của đạo hàm – Tính đơn điệu của hàm số – Cực trị của hàm số – GTLN, GTNN của hàm số. Bài toán tối ưu – Đường tiệm cận của đồ thị hàm số – Đồ thị của hàm số – Sự tương giao giữa các đồ thị. Tiếp tuyến của đồ thị hàm số Lũy thừa – Mũ – Logarit – Lũy thừa, mũ và logarit – Hàm số lũy thừa, hàm số mũ và hàm số logarit – Bài toán lãi suất – Phương trình, bất phương trình mũ – Phương trình, bất phương trình logarit Nguyên hàm – Tích phân và ứng dụng – Nguyên hàm – Tích phân – Ứng dụng của tích phân Số phức – Dạng đại số và các phép toán trên tập số phức – Phương trình bậc hai với hệ số thực – Biểu diễn hình học của số phức [ads] Khối đa diện, mặt nón, mặt trụ và mặt cầu – Khối đa diện và thể tích khối đa diện – Mặt nón, mặt trụ và mặt cầu Phương pháp tọa độ trong không gian – Hệ tọa độ trong không gian – Phương trình mặt cầu – Phương trình mặt phẳng – Phương trình đường thẳng – Vị trí tương đối giữa đường thẳng, mặt phẳng, mặt cầu – Góc và khoảng cách Lượng giác – Cung và góc lượng giác. Giá trị lượng giác của một cung. Công thức lượng giác – Hàm số lượng giác – Phương trình lượng giác cơ bản và thường gặp Tổ hợp – xác suất – Quy tắc đếm – Hoán vị, chỉnh hợp, tổ hợp – Nhị thức Niu-Tơn – Phép thử và biến cố – Xác suất của biến cố Dãy số – Giới hạn – Phương pháp quy nạp toán học – Dãy số, cấp số cộng và cấp số nhân – Giới hạn của dãy số – Giới hạn của hàm số – Hàm số liên tục Đạo hàm – Định nghĩa và ý nghĩa đạo hàm – Quy tắc tính đạo hàm – Đạo hàm của hàm số lượng giác – Vi phân – Đạo hàm cấp cao Phép dời hình, phép đồng dạng trong mặt phẳng Hình học không gian lớp 11 – Quan hệ song song trong không gian – Quan hệ vuông góc trong không gian – Khoảng cách và góc

Nguồn: toanmath.com

Đọc Sách

Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình
Nội dung Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình Bản PDF - Nội dung bài viết Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tài liệu này bao gồm một số bài toán ứng dụng thực tiễn được phân loại theo dạng bài và mức độ vận dụng. Dưới đây là một số ví dụ: 1. Bài toán về con kiến trong cốc: Có một cái cốc úp ngược với chiều cao 20cm, bán kính đáy là 3cm và bán kính miệng là 4cm. Con kiến đứng ở điểm A trên miệng cốc và muốn bò từ A đến điểm B ở đáy cốc. Hỏi con kiến phải bò quãng đường ngắn nhất là bao nhiêu? 2. Bài toán về cho thuê căn hộ: Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá thuê mỗi căn hộ là 2 triệu đồng/tháng, thì tất cả các căn hộ đều có người thuê. Tuy nhiên, nếu tăng giá thuê lên 100,000 đồng/tháng, thì có thêm hai căn hộ bị bỏ trống. Hỏi để có thu nhập cao nhất, công ty cần đặt giá thuê mỗi căn hộ là bao nhiêu? 3. Bài toán về xây đường ống dẫn nước: Một công ty muốn xây một đường ống dẫn từ điểm A trên bờ đến điểm B trên hòn đảo, với giá xây trên bờ là 50,000 USD/km và dưới nước là 130,000 USD/km. Tìm vị trí trên đoạn bờ mà khi nối ống theo hình tam giác thì chi phí ít nhất. Đây chỉ là một số ví dụ trong tuyển tập bài toán ứng dụng thực tiễn của Võ Thanh Bình, hi vọng sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo!
Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán
Nội dung Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Bản PDF - Nội dung bài viết Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Bộ tài liệu này bao gồm 94 trang với các bài toán mức độ vận dụng cao, được thiết kế để ôn luyện cho kỳ thi THPT Quốc gia 2017. Với những bài toán này, bạn sẽ có cơ hội ôn luyện để đạt điểm cao 9, 10 trong kỳ thi. Trích dẫn một số câu hỏi trong tài liệu: Một đoàn tàu di chuyển trên một đường thẳng ngang với vận tốc không đổi v0. Khi tắt máy, lực hãm và lực cản tổng hợp cả đoàn tàu bằng 1/10 trọng lượng của nó. Hỏi chuyển động của đoàn tàu sau khi tắt máy và hãm là gì? Một thanh AB dài 2a ban đầu được giữ ở góc nghiêng α = α0 với một đầu không ma sát với bức tường thẳng đứng. Khi buông thanh, nó sẽ trượt xuống dưới tác động của trọng lực. Hãy tính góc α theo thời gian t. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của AD. Tính tỉ số thể tích của hai khối chóp S’.BCDM và S.ABCD. Với bộ tài liệu này, bạn sẽ được tiếp cận với những bài toán phức tạp và có cấu trúc logic sắc nét, giúp bạn nâng cao kiến thức và kỹ năng giải toán. Hãy cùng ôn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới!
Bài toán thực tế liên quan đến hình học Nguyễn Bá Hoàng
Nội dung Bài toán thực tế liên quan đến hình học Nguyễn Bá Hoàng Bản PDF - Nội dung bài viết Bài toán thực tế liên quan đến hình học Bài toán thực tế liên quan đến hình học Tài liệu này bao gồm 45 trang với các bài toán thực tế xoay quanh hình học, như tính toán đường đi ngắn nhất, diện tích lớn nhất, và tính toán diện tích và thể tích của các vật. Nội dung kiến thức: Cung cấp công thức tính chu vi, diện tích của các hình, và thể tích của các khối hình. Giải thích cách tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn, khoảng, nửa đoạn, nửa khoảng. Hướng dẫn ứng dụng tích phân để tính diện tích hình phẳng và thể tích của khối tròn xoay. Ví dụ minh hoạ: Tài liệu này cung cấp 17 ví dụ minh họa có phân tích và lời giải chi tiết. Bài tập đề nghị: Gồm 83 bài toán trắc nghiệm thực tế liên quan đến hình học để học viên ôn tập và kiểm tra kiến thức. Hướng dẫn và đáp án: Tài liệu cung cấp hướng dẫn chi tiết và đáp án cho các bài tập, giúp học viên hiểu rõ hơn về nội dung hình học thực tế.
Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn
Nội dung Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn Bản PDF - Nội dung bài viết Bài toán thực tế và bài toán tối ưu min max Bài toán thực tế và bài toán tối ưu min max Trong tài liệu đặc biệt này, thầy Lê Viết Nhơn đã tổng hợp 23 trang về các bài toán thực tế và bài toán tối ưu min - max, với mục đích giúp học sinh hiểu rõ hơn về những vấn đề này. Phần 1 của tài liệu tập trung vào bài toán thực tế tối ưu, giúp người đọc có cái nhìn tổng quan về cách tiếp cận và giải quyết các vấn đề thực tế một cách tối ưu nhất. Phần 2 và Phần 3 của tài liệu bao gồm các bài toán thực tế liên quan đến tích phân, mũ, và logarit, giúp học sinh áp dụng kiến thức toán học vào các bài toán hàng ngày. Cuối cùng, Phần 4 chứa các bài tập rèn luyện được trích từ đề thi thử các trường THPT, giúp học sinh ôn tập và cải thiện kỹ năng giải bài toán. Với các ví dụ như việc gấp tấm kẽm thành hình lăng trụ, xác định vị trí điểm M để diện tích hình chữ nhật lớn nhất, và vấn đề thả cá trên một đơn vị diện tích hồ, tài liệu này không chỉ giúp học sinh hiểu rõ về bài toán tối ưu min - max mà còn giúp họ áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo.