Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 10 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội

Nội dung Đề thi Olympic lớp 10 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm 2017-2018 cụm trường Thanh Xuân & Cầu Giấy - Hà Nội Đề thi Olympic Toán lớp 10 năm 2017-2018 cụm trường Thanh Xuân & Cầu Giấy - Hà Nội Đề thi Olympic Toán lớp 10 năm 2017-2018 của cụm trường Thanh Xuân & Cầu Giấy - Hà Nội bao gồm 1 trang với bài toán tự luận, thời gian làm bài 150 phút. Kỳ thi nhằm tuyển chọn các em Học sinh giỏi môn Toán khối 10, đề thi có lời giải chi tiết. Một số câu hỏi trong đề thi: Cho hàm số \(y = x^2 - 4x + 3\) có đồ thị (P). Hãy lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. Tìm các số a, b, c sao cho hàm số \(y = f(x) = ax^2 + bx + c\) có đồ thị là một parabol với đỉnh là I(2; 9) và đi qua điểm A(-1; 0). Cho tứ giác ABCD có AC vuông góc BD và nội tiếp đường tròn tâm O bán kính R = 1. Gọi diện tích tứ giác ABCD là S và độ dài các cạnh là AB = a, BC = b, CD = c, DA = d. Chứng minh rằng \((ab + cd)(ad + bc) = 8S\). Đây là một đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán mà còn phản ánh được năng lực, sự sáng tạo và logic trong tư duy toán học của học sinh. Hy vọng rằng các em sẽ đạt kết quả tốt trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.