Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 Toán 11 năm 2022 - 2023 trường THPT Phan Châu Trinh - Đà Nẵng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán 11 năm học 2022 – 2023 trường THPT Phan Châu Trinh, thành phố Đà Nẵng; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề học kì 2 Toán 11 năm 2022 – 2023 trường THPT Phan Châu Trinh – Đà Nẵng : + Chọn khẳng định đúng trong các khẳng định sau: A. Hình chóp tam giác đều có tất cả các mặt là các tam giác bằng nhau. B. Hình chóp tam giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tam giác đều là tứ diện đều. D. Tứ diện đều là hình chóp tam giác đều. + Xét các mệnh đề sau: 1. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với hai đường thẳng phân biệt nằm trong (P). 2. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với hai đường thẳng bất kì cắt nhau nằm trong (P). 3. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với đường thẳng nằm trong (P). 4. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với mọi đường thẳng nằm trong (P). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O AB a AD a 2. Cạnh SA vuông góc với mặt phẳng đáy, góc giữa cạnh SD và mặt phẳng đáy bằng 0 60. a) Xác định góc giữa cạnh SD và mặt phẳng đáy. Từ đó tính độ dài đường cao của hình chóp. b) Gọi M và N lần lượt là trung điểm của cạnh BC và cạnh CD. Tính khoảng cách giữa hai đường thẳng SO và MN.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường Diên Hồng TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường Diên Hồng TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS – THPT Diên Hồng, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THCS – THPT Diên Hồng – TP HCM : + Cho hình chóp S.ABCD có đáy là hình vuông tâm O với độ dài cạnh là 2a. Cạnh bên SA vuông góc đáy có độ dài SA a 3. a/ Chứng minh rằng: BC SAB và SBD SAC. b/ Xác định và tính góc giữa SO và mặt đáy (ABCD). c/ Xác định và tính khoảng cách từ điểm B đến (SCD). + Viết phương trình tiếp tuyến của đồ thị hàm số 3 2 C y x x 3 2 biết tiếp tuyến vuông góc với đường thẳng 1 : 2020. + Chứng minh rằng phương trình 2020 2019 m x x x 2019 2020 2 4039 0 luôn có nghiệm với mọi tham số m.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường chuyên Lê Hồng Phong TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Cần Thạnh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Cần Thạnh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tính đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến của (C): 2 1 3 x y x biết tiếp tuyến song song với đường thẳng 1 : 1 7 d. + Viết phương trình tiếp tuyến với đồ thị hàm số 3 2 y x 3x tại điểm có hoành độ bằng -1.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc và gia tốc của vật tại thời điểm t s. + Cho hàm số có đồ thị C. Viết phương trình tiếp tuyến của đồ thị C, biết tiếp tuyến song song đường thẳng d y x 9 6. + Chứng minh phương trình 2 4 m m x x 2 6 2 0 luôn có nghiệm với mọi giá trị thực của tham số m.