Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Quảng Nam

Ngày 10 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi học sinh giỏi lớp 9 cấp tỉnh môn Toán năm học 2020 – 2021. Đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Quảng Nam : + Cho hình vuông ABCD có tâm O và cạnh bằng 6cm, điểm M nằm trên cạnh BC. a) Khi BM cm 2, hạ OK vuông góc với AM tại K. Tính độ dài đoạn thẳng OK. b) Khi điểm M thay đổi trên cạnh BC (M không trùng B và C), điểm N thay đổi trên cạnh CD sao cho 0 MAN 45, E là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định. + Cho hai đường tròn O R và O r tiếp xúc ngoài tại AR r. Dựng lần lượt hai tiếp tuyến OB O C của hai đường tròn O r, O R sao cho hai tiếp điểm B C nằm cùng phía đối với đường thẳng OO’. Từ B vẽ đường thẳng vuông góc với OO’ cắt OC’ tại K, từ C vẽ đường thẳng vuông góc với OO’ cắt OB tại H. a) Gọi D là giao điểm của OB và OC’. Chứng minh DO BO CO DO và DA là tia phân giác của góc ODO. b) Đường thẳng AH cắt đường tròn O R tại E (E khác A). Chứng minh tứ giác OABE nội tiếp đường tròn. c) Đường thẳng AK cắt đường tròn O r tại F (F khác A), L là giao điểm của BC và EF. Chứng minh BF song song với CE và ba điểm ADL thẳng hàng. + Tìm giá trị của tham số m để phương trình 2 1 0 x x mx m có hai nghiệm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Chúng tôi xin trân trọng giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán vòng 1 năm học 2023 - 2024 tại trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Một số câu hỏi trích dẫn từ đề khảo sát bao gồm: Cho số tự nhiên n lớn hơn 1, biết n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng n chia hết cho 5. Trong tam giác ABC vuông tại A (AB < AC), đường cao AH cắt BC tại H, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. Cần chứng minh các quan hệ đồng dạng và vuông góc trong tam giác. Các số nguyên dương từ 1 đến 100 được chia thành 25 tập hợp sao cho mỗi tập hợp chứa ít nhất một phần tử. Nhiệm vụ là chứng minh tồn tại ba số nguyên dương thuộc cùng một tập hợp sao cho chúng tạo thành độ dài ba cạnh của một tam giác. Hãy chuẩn bị kỹ lưỡng và tự tin tham gia đề khảo sát để kiểm tra kiến thức và ôn tập cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội Bản PDF - Nội dung bài viết Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2023 – 2024 tại trường THCS & THPT Nguyễn Tất Thành, Đại học Sư Phạm Hà Nội, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 25 tháng 09 năm 2023.
Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Chào mừng đến với Đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2023 - 2024 của Phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương! Đề thi này sẽ là cơ hội thách thức và phát triển kiến thức của các em học sinh lớp 9. Trích dẫn một số câu hỏi thú vị trong Đề thi: Cho đa thức \( A = 12x^2 - 3y^2 + 8xy + 2x + y \) biết rằng với \( x = a \) và \( y = b \) thì \( A = 0 \). Chứng minh rằng \( 6a + b + 1 \) là bình phương của một số nguyên. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE. Chứng minh rằng \( AB \times CF = AC \times AE \). Cho tam giác ABC, điểm D trên cạnh BC sao cho \( DC = 4 \times BD \). Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF đạt giá trị lớn nhất. Hy vọng rằng các em sẽ tự tin và thành công trong việc giải quyết các bài toán thú vị và phức tạp trong Đề thi này. Chúc các em học tốt và đạt kết quả cao!
Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 9. CLB Văn Hóa Toán trường THCS Cầu Giấy sẽ tổ chức đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 2 trong năm học 2023-2024. Kỳ thi sẽ diễn ra vào ngày thứ Năm, ngày 21 tháng 09 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: - Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Hãy tìm giá trị lớn nhất của biểu thức P = 3a + ab + abc. - Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Chứng minh rằng FE là phân giác của góc BFD và kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. - Xét tập T = {1; 2; 3; ...; 10}. Hãy chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x - y.