Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Phú Thọ Đề thi Học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Phú Thọ Chào đón quý thầy cô và các em học sinh lớp 9, đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ đã được Sytu tổ chức. Đề thi bao gồm 16 câu trắc nghiệm (tổng cộng 8 điểm) và 4 câu tự luận (tổng cộng 12 điểm), với thời gian làm bài 150 phút. Trích đoạn từ Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022 - 2023 sở GD&ĐT Phú Thọ: + Đề bài 1: Một chiếc xe khách khởi hành từ Hà Nội và một chiếc xe tải khởi hành từ Vinh cùng một lúc và đi ngược chiều nhau. Sau khi gặp nhau, xe khách chạy thêm 2 giờ thì đến Vinh, còn xe tải chạy thêm 4 giờ 30 phút thì đến Hà Nội. Biết Hà Nội cách Vinh là 300 km, hai xe đi cùng tuyến đường. Hỏi vận tốc của xe khách bằng bao nhiêu? + Đề bài 2: Khi tính toán thể tích căn phòng hình hộp chữ nhật, bạn An đã nhập sai chiều cao vào máy tính. Sau khi thấy kết quả, An cho biết chỉ cần trừ đi 1/3 kết quả đó sẽ chính xác. Nhưng bạn Bình biết rằng để có kết quả đúng, An còn phải cộng thêm 8m3 nữa. Hỏi thể tích căn phòng là bao nhiêu? + Đề bài 3: Một đoàn học sinh đi trải nghiệm ở công viên Văn Lang thành phố Việt Trì bằng ô tô. Nếu mỗi ô tô chở 22 học sinh thì sẽ thừa 1 học sinh. Nếu bớt đi 1 ô tô thì số học sinh được chia đều cho các ô tô còn lại. Biết mỗi ô tô chở không quá 30 học sinh, hỏi đoàn học sinh đó có bao nhiêu học sinh? Với những câu hỏi thú vị và đòi hỏi sự tính toán logic, hy vọng các em học sinh sẽ tự tin và thành công khi tham gia vào bài thi. Chúc mừng các em và hãy cố gắng hết sức!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT Triệu Sơn - Thanh Hóa
Ngày 08 tháng 09 năm 2020, phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chọn đội dự tuyển học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Triệu Sơn – Thanh Hóa gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm các cặp số (x;y) nguyên thỏa mãn 2y(2x^2 + 1) – 2x(2y^2 + 1) + 1 = x^3y^3. + Tìm các số nguyên dương x, y, z thỏa mãn đồng thời hai điều kiện: (x – y√2020)/(y – z√2020) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. + Cho hình vuông ABCD cố định. Một điểm I di động trên cạnh AB (I khác A và B). Tia DI cắt đường thẳng CB tại E. Đường thẳng CI cắt AE tại M. Đường thẳng BM cắt đường thẳng DE tại F. 1. Chứng minh rằng BI^2/BE^2 = AI/CE. 2. Trên tia đối của tia AB lấy điểm P sao cho AP = BE. Đường thẳng AE cắt CP tại H. Chứng minh rằng DH song song CI. 3. Tìm quỹ tích điểm F khi I di động trên cạnh AB.
Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thanh Hóa
Thứ Ba ngày 06 tháng 10 năm 2020, phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa : + Tìm cặp nghiệm nguyên thỏa mãn: x^2022 = y^2022 – y^1348 – y^674 + 2. + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tam giác AEF đồng dạng với tam giác ABC. 2) Chứng minh H là giao điểm ba đường phân giác của tam giác DEF. 3) Đặt BC = a; AC = b, AB = c; S là diện tích tam giác ABC. Chứng minh rằng: a^2 + b^2 + c^2 >= 4√3S. + Cho các số thực dương thỏa mãn abc + a + c = b. Tìm giá trị lớn nhất của biểu thức P = 2/(a^2 + 1) – 2/(b^2 + 1) + 3/(c^2 + 1).
Đề thi HSG Toán 9 cấp huyện năm 2020 - 2021 phòng GDĐT Thạch Hà - Hà Tĩnh
Thứ Sáu ngày 25 tháng 09 năm 2020, phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi huyện môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thạch Hà – Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Có 3 giỏ táo; giỏ thứ nhất có 11 trái, giỏ thứ hai có 7 trái và giỏ thứ 3 có 6 trái. Nêu cách chuyển các trái táo sao cho số táo trong 3 giỏ bằng nhau. Việc chuyển táo từ giỏ này sang giỏ kia phải thỏa mãn điều kiện số táo chuyển vào giỏ đó phải đúng bằng số táo có trong giỏ đó. + Cho tam giác ABC vuông tại A có AB < AC; vẽ đường cao AH, phân giác trong AD. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB và AC. a) Biết AB = 6 cm, AC = 8 cm. Tính AH, MN, BD. b) Gọi AE là phân giác ngoài của tam giác ABC. Chứng minh rằng: 1/AB + 1/AC = √2/AD và 1/AB – 1/AC = √2/AE. + Cho các số thực x, y, z thỏa mãn: 0 < x, y, z =< 1. Chứng minh rằng: x/(1 + y + xz) + y/(1 + z + xy) + z/(1 + x + yz) =< 3/(x + y + z).
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Sầm Sơn - Thanh Hóa
Thứ Ba ngày 29 tháng 09 năm 2020, phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 khối THCS năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Sầm Sơn – Thanh Hóa : + Tìm các số nguyên x, y thỏa mãn x^4 + 2y^2 – 17x^2 – 2xy + 90 = 6y. + Cho ba số nguyên dương x, y, z. Chứng minh rằng: (x – y)^5 + (y – z)^5 + (z – x)^5 chia hết cho 5(x – y)(y – z)(z – x). + Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC (E khác B). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. a) Chứng minh: 1/AE^2 + 1/AK^2 không đổi khi E thay đổi trên cạnh BC. b) Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M. Chứng minh rằng: 1/AE + 1/AK = √2/AM. c) Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất.