Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải nhanh GTLN - GTNN mô đun số phức với Elip và không Elip - Lục Trí Tuyên

Tài liệu gồm 19 trang tuyển tập một số dạng và phương pháp giải bài toán GTLN – GTNN mô đun số phức, tài liệu có các ví dụ minh họa kèm lời giải chi tiết. Nội 1. Hình dạng và thông số của Elip 2. Bài toán liên quan Bài toán chung: Cho M chuyển động trên Elip (E) và một điểm A cố định. Tìm GTLN, GTNN của AM Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| Sự tương ứng ở đây gồm: + M là điểm biểu diễn z + F1, F2 tương ứng là điểm biểu diễn z1, z2 + A là điểm biểu diễn z0 3. Các dạng giải được + Bài toán 1. Phương trình (E) dạng chính tắc: x^2/a^2 + y^2/b^2 = 1 Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – c| + |z + c| = 2a hoặc |z – ci| + |z + ci| = 2a (Elip đứng). Tìm GTLN, GTNN của P = |z – z0| + Bài toán 2. Elip không chính tắc nhưng A là trung điểm của F1F2 tức A là tâm Elip Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| với đặc điểm nhận dạng z0 = (z1 + z2)/2 + Bài toán 3. Elip không có dạng chính tắc, A không là trung điểm của F1F2 nhưng A nằm trên các trục của Elip [ads] ELIP SUY BIẾN Bài toán: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a nhưng có |z1 – z2| = 2a. Tìm GTLN, GTNN của T = |z – z0| GTLN-GTNN CỦA MÔ ĐUN SỐ PHỨC KHÔNG ELIP + Dạng 1: Tìm |z| hoặc z thoả mãn phương trình z.f(|z|) = g(|z|) nghĩa là phương trình bậc nhất ẩn z chứa |z| + Dạng 2: Cho |z1| = m, |z2| = n và |az1 + bz2| = p. Tính q = |cz1 + dz2| + Dạng 3. Cho số phức z thỏa mãn |z – z0| = R. Tìm GTLN của P = a|z – z1| + b|z – z2| biết rằng z0 – z1 = -k(z0 – z2) (k > 0) và a, b ∈ R + Dạng 4. Cho số phức z thõa mãn |z + z0/z| ≤ k (k > 0) hay dạng tương đương |z^2 + z0| ≤ k|z|, (k > 0). Tìm GTLN, GTNN của T = |z| + Dạng 5. Cho số phức z thỏa mãn |z1.z – z2 = k > 0. Tìm GTLN, GTNN của T = |z – z0| + Dạng 6. Cho số phức z thỏa mãn |z – z1| = |z – z2|. Tìm GTNN của T = |z – z0| + Dạng 7. Cho hai số phức z1, z2 thỏa mãn |z1 – z1*| = R và |z2 – z2*| = |z2 – z3*|, với z1*, z2* và z3* cho trước. Tìm GTNN của T = |z1 – z2| Lời kết : Các bài toán trên có thể giải bằng phương pháp đại số bằng cách rút một ẩn theo ẩn còn lại từ giả thiết để thay vào biểu thức cần đánh giá thành hàm số dạng T = f(x). Sau đó tìm GTLN, GTNN của trên miền xác định của f(x). Các đánh giá đảm bảo chặt chẽ cần chứng tỏ có đẳng thức (dấu “=”) xảy ra. Để tránh phức tạp vấn đề tôi không trình bày ở đây. Tuy nhiên các bài toán tổng quát đã nêu đều đảm bảo điều đó.

Nguồn: toanmath.com

Đọc Sách

Bài giảng giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững các định nghĩa về số phức và các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. + Nắm vững các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Nắm vững các bất đẳng thức cơ bản liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz. Kĩ năng : + Biết thực hiện thành thạo các định nghĩa, các phép toán trên số phức và vận dụng vào giải được một số bài toán liên quan. + Biết thực hiện thành thạo việc chuyển đổi ngôn ngữ số phức sang ngôn ngữ hình học. + Giải thành thạo các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Vận dụng linh hoạt các bất đẳng thức liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz vào giải các bài toán max, min môđun số phức. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. Dạng 2 : Phương pháp đại số.
Bài giảng phương trình bậc hai với hệ số thực
Tài liệu gồm 15 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình bậc hai với hệ số thực, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững cách giải phương trình bậc hai với hệ số thực trên tập số phức. Kĩ năng : + Giải được phương trình bậc hai với hệ số thực trên tập số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng định lý Vi-ét vào giải một số bài toán chứa nhiều biểu thức đối xứng đối với hai nghiệm của phương trình. + Biết cách giải các phương trình quy về phương trình bậc hai đối với hệ số thực. + Vận dụng các kiến thức đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2 : Định lí Vi-ét và ứng dụng. Dạng 3 : Phương trình quy về phương trình bậc hai.
Bài giảng các phép toán trên tập hợp số phức
Tài liệu gồm 22 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề các phép toán trên tập hợp số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nhận biết được các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. Kĩ năng : + Thành thạo các phép toán cộng, trừ hai số phức và vận dụng vào giải được một số bài toán liên quan. + Thành thạo phép nhân hai số phức và vận dụng vào giải được một số bài toán liên quan. + Thành thạo phép toán chia hai số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng các phép toán đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện các phép toán của số phức. Dạng 2 : Xác định các yếu tố của số phức qua các phép toán. – Bài toán 1. Tìm phần thực, phần ảo của số phức. – Bài toán 2. Tìm số phức liên hợp, tính môđun số phức. – Bài toán 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 3 : Tìm số phức thỏa mãn điều kiện cho trước. Dạng 4 : Bài toán tập hợp điểm biểu diễn số phức.
Bài giảng khái niệm số phức
Tài liệu gồm 12 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề khái niệm số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững khái niệm số phức, số phức liên hợp, hai số phức bằng nhau. + Trình bày được công thức tính môđun số phức. + Mô tả được biểu diễn hình học của một số phức. Kĩ năng : + Biết tìm phần thực, phần ảo của một số phức. + Biết tìm số phức liên hợp của số phức z = a + bi. + Tính được môđun của một số phức. + Biết biểu diễn hình học của một số phức. + Cho điểm M(a;b) là điểm biểu diễn của số phức z = a + bi, biết tìm phần thực, phần ảo; biết tính môđun của z. + Biết tìm điều kiện để hai số phức bằng nhau. + Biết cách tìm tập hợp điểm biểu diễn cho số phức z thỏa mãn tính chất nào đó. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định các yếu tố liên quan đến khái niệm số phức. – Bài toán 1. Tìm phần thực, phần ảo của số phức. – Bài toán 2. Tìm số phức liên hợp, môđun của số phức, điều kiện để hai số phức bằng nhau. Dạng 2 : Tìm điểm biểu diễn hình học của số phức.