Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 lần 1 năm 2023 - 2024 trường THPT Vĩnh Lộc - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 lần 1 năm học 2023 – 2024 trường THPT Vĩnh Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 11 lần 1 năm 2023 – 2024 trường THPT Vĩnh Lộc – Thanh Hóa : + Trong môi trường nuôi cấy ổn định người ta nhận thấy rằng: cứ sau đúng 5 ngày số lượng loài của vi khuẩn A tăng lên gấp đôi, còn sau đúng 10 ngày số lượng loài của vi khuẩn B tăng lên gấp ba. Giả sử ban đầu có 50 con vi khuẩn A và 100 con vi khuẩn B, hỏi sau bao nhiêu ngày nuôi cấy trong môi trường đó thì số lượng vi khuẩn của cả hai loài bằng 20900 con, biết rằng tốc độ tăng trưởng của mỗi loài ở mọi thời điểm là như nhau? + Trong không gian với hệ tọa độ Oxyz, xét đường thẳng ∆ đi qua điểm A(0;0;1) và vuông góc với mặt phẳng Ozx. Cho điểm B(0;4;0) với điểm C là điểm cách đều đường thẳng ∆ và trục Ox. Các mệnh đề sau đúng hay sai? a) Vectơ pháp tuyến của mặt phẳng Oyz là: n(1;0;0). b) Phương trình mặt phẳng trung trực của OA là: 1 0 2 z. c) Điểm C không thuộc mặt phẳng trung trực đoạn OA. d) Khoảng cách nhỏ nhất giữa điểm B và C là: 1 2. + Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau: Các mệnh đề sau đúng hay sai? a) mốt của mẫu số liệu là 24. b) Cỡ của mẫu số liệu bằng 3. c) Số trung vị của mẫu số liệu ghép nhóm ở bảng trên là 18,2. d) Tứ phân vị thứ nhất của mẫu của mẫu số liệu là 15,25.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 - 2019 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh khối 11 có năng khiếu môn Toán để bồi dưỡng, đào tạo và tạo điều kiện để các em được thử sức ở các cuộc thi cấp tỉnh, quốc gia … . Đề thi HSG Toán 11 có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A (-3;1), đỉnh C nằm trên đường thẳng Δ: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N (6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C): x^2 + y^2 = 25, đường thẳng AC đi qua điểm K (2;1). Gọi M, N là chân các đường cao kẻ từ đỉnh B và C. Tìm tọa độ các đỉnh tam giác ABC, biết phương trình đường thẳng MN là 4x – 3y + 10 = 0 và điểm A có hoành độ âm. + Cho hàm số y = x^2 + 2x – 3 (*) và đường thẳng d: y = 2mx – 4. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (*). Tìm m để d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn (x1 + m)/(x2 – 1) + (x2 + m)/(x1 – 1) = -6.
Đề kiểm tra chất lượng đội tuyển HSG Toán 11 năm học 2016 - 2017 trường Lê Lợi - Thanh Hóa lần 1
Đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2016 – 2017 trường THPT Lê Lợi – Thanh Hóa lần 1 gồm 6 câu tự luận. Các nội dung thi gồm: phương trình lượng giác, biện luận phương trình ẩn tham số m, giải phương trình vô tỉ, giải hệ phương trình, tổ hợp, hình học tọa độ phẳng và hình học không gian. Đề thi có lời giải chi tiết.