Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG huyện lớp 7 môn Toán năm 2015 2016 phòng GD ĐT Thái Thụy Thái Bình

Nội dung Đề khảo sát HSG huyện lớp 7 môn Toán năm 2015 2016 phòng GD ĐT Thái Thụy Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát HSG huyện lớp 7 môn Toán năm 2015-2016 phòng GD ĐT Thái Thụy Thái Bình Đề khảo sát HSG huyện lớp 7 môn Toán năm 2015-2016 phòng GD ĐT Thái Thụy Thái Bình Xin chào quý thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến mọi người đề khảo sát HSG huyện Toán lớp 7 năm 2015-2016 từ phòng GD&ĐT Thái Thụy - Thái Bình. Bộ đề thi này bao gồm các câu hỏi đa dạng và thú vị, cung cấp đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Để mọi người hiểu rõ hơn về nội dung của đề thi, chúng ta cùng phân tích và giải quyết một số câu hỏi trong đề bài: Câu 1: Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. Ta cần chứng minh ∆DBM = ∆FMB. Câu 2: Ta cần chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. Câu 3: Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chúng ta phải chứng minh BC đi qua trung điểm của DK. Câu 4: Cho đa thức f(x) = ax2 + bx + c, với a, b, c thuộc Z. Biết f(-1); f(0); f(1) đều chia hết cho 3. Chúng ta cần chứng minh rằng a, b, c đều chia hết cho 3. Câu 5: Tính giá trị của đa thức B(x) = 1 + x + x2 + x3 + ... + x99 + x100 tại x = 1/2. Đề khảo sát này cung cấp cơ hội cho các em thử sức và rèn luyện kỹ năng giải quyết vấn đề toán học. Hy vọng rằng mọi người sẽ cùng nhau ôn tập và chuẩn bị tốt cho kì thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 7 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An.
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Ân Thi - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ân Thi, tỉnh Hưng Yên.
Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu Olympic cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương : + Tìm các số nguyên x và y biết: x + xy + y = 2. + Cho các số nguyên dương a b c d thoả mãn a2 + b2 + c2 + d2 chia hết cho 2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC nhọn có AB < AC < BC, O là giao điểm ba tia phân giác các góc trong của tam giác. Kẻ OH vuông góc AC tại H, OI vuông góc BC tại I. 1) Chứng minh CHI cân. 2) Trên đoạn IC lấy K sao cho IK = AH , gọi M là giao điểm của AK và HI . Chứng minh M là trung điểm của AK. 3) Chứng minh B, O, M thẳng hàng.
Đề học sinh năng khiếu Toán 7 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra học sinh năng khiếu môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 7 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Bạn An nghĩ ra một số có ba chữ số, biết số đó chia hết cho 18 và các chữ số của số đó tỉ lệ với ba số 1; 2; 3. + Cho tam giác ABC vuông tại A (AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. a. Chứng minh ABC = CKA b. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD = HA. Qua điểm D vẽ đường thẳng vuông góc với BC cắt AC tại E. Gọi F là hình chiếu của điểm E trên AH. Chứng minh AF = HB. c. Gọi M là trung điểm của đoạn thẳng BE. Tính số đo CHM. d. Chứng minh: AB2 AC2 AH2. + Tìm các số a, b, c nguyên dương thỏa mãn.