Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán - Lê Văn Hưng

Tài liệu gồm 182 trang được biên soạn bởi thầy giáo Lê Văn Hưng, tuyển tập 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, tương ứng với 5 bài toán trong các đề tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội. Trong mỗi chủ đề, tài liệu tóm tắt lý thuyết trọng tâm học sinh cần nắm, hướng dẫn giải các dạng bài tập điển hình và chọn lọc các bài tập tự luyện từ các đề tuyển sinh vào lớp 10 môn Toán, có đáp số và hướng dẫn giải. Khái quát nội dung tài liệu 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán – Lê Văn Hưng: CHỦ ĐỀ I : RÚT GỌN BIỂU THỨC VÀ BÀI TOÁN PHỤ. + Dạng 1. Tính giá trị cuả biểu thức A khi x = x0. + Dạng 2. Tìm giá trị của biến khi biết giá trị của biểu thức. + Dạng 3. So sánh biểu thức A với k hoặc. + Dạng 4. Tìm giá trị nguyên để của x để biểu A có giá trị nguyên. + Dạng 5. Tìm giá trị của x để biểu A có giá trị nguyên. + Dạng 6. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức A. + Dạng 7. Chứng minh biểu thức A luôn luôn âm hoặc luôn luôn dương. + Dạng 8. Chứng minh biểu thức thỏa mãn với điều kiện nào đó. CHỦ ĐỀ II : HỆ PHƯƠNG TRÌNH. Phần I : Giải và biện luận hệ phương trình. + Dạng 1. Giải hệ phương trình cơ bản. + Dạng 2. Giải hệ phương trình không cơ bản. + Dạng 3. Giải hệ phương trình chứa tham tham số. Phần II : Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Tìm các chữ số tự nhiên. + Dạng 2. Tính tuổi. + Dạng 3. Hình học. + Dạng 4. Toán liên quan đến tỉ số phần trăm. + Dạng 5. Toán làm chung công việc. + Dạng 6. Bài toán liên quan đến sự thay đổi của tích. + Dạng 7. Toán chuyển động. [ads] CHỦ ĐỀ III : PHƯƠNG TRÌNH BẬC HAI – ĐƯỜNG THẲNG – PARABOL. + Dạng 1. Tính giá trị của hàm số y = f(x) = ax2 tại x = x0. + Dạng 2. Xác định tính đồng biến, nghịch biến của hàm số. + Dạng 3. Vẽ đồ thị hàm số y = f(x) = ax2 (a khác 0). + Dạng 4. Xác định tham số. + Dạng 5. Tìm tọa độ giao điểm của parabol và đường thẳng. + Dạng 6. Xác định hệ số a, b, c của phương trình bậc hai. + Dạng 7. Giải phương trình bậc hai. + Dạng 8. Giải và biện luận phương trình bậc hai. + Dạng 9. Giải hệ phương trình hai ẩn gồm một ẩn. + Dạng 10. Giải hệ phương trình có hai ẩn số. + Dạng 11. Hệ thức Vi-ét và ứng dụng. + Dạng 12. Giải và biện luận phương trình trùng phương. + Dạng 13. Giải một số phương trình, hệ phương trình. + Dạng 14. Giải bài toán bằng cách lập phương trình. + Dạng 15. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc. + Dạng 16. Tìm điểm cố định của đường thẳng phụ thuộc tham số. + Dạng 17. Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến. CHỦ ĐỀ IV : CÁC BÀI TOÁN LIÊN QUAN ĐẾN ĐƯỜNG TRÒN. + Dạng 1. Bài toán liên quan đến chứng minh. + Dạng 2. Bài toán liên quan đến tính toán. + Dạng 3. Bài toán liên quan đến quỹ tích. + Dạng 4. Bài toán liên quan đến dựng hình. + Dạng 5. Bài toán liên quan đến cực trị hình học. CHỦ ĐỀ V : BÀI TOÁN MIN – MAX, GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. Phần I . Bài toán Min – Max. + Dạng 1. Kĩ thuật chọn điểm rơi. + Dạng 2. Kĩ thuật khai thác giả thiết. + Dạng 3. Kĩ thuật Cô – si ngược dấu. Phần II . Giải phương trình chứa căn thức. + Dạng 1. Sử dụng biến đổi đại số. + Dạng 2. Đặt ẩn phụ. + Dạng 3. Đánh giá.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải toán bằng cách lập phương trình - hệ phương trình ôn thi vào lớp 10
Tài liệu gồm 20 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề giải toán bằng cách lập phương trình – hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP Để giải bài toán bằng cách lập phương trình, hệ phương trình ta thường thực hiện theo các bước sau: Bước 1: Chọn ẩn số (nêu đơn vị của ẩn và đặt điều kiện nếu cần). Bước 2: Tính các đại lượng trong bài toán theo giả thiết và ẩn số, từ đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình vừa lập. Bước 4: Đối chiếu với điều kiện và trả lời. CÁC BÀI TOÁN CHUYỂN ĐỘNG Kiến thức cần nhớ: + Quãng đường = Vận tốc . Thời gian. + Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường đi được. + Nếu hai xe đi ngược chiều nhau khi gặp nhau lần đầu: Thời gian hai xe đi được là như nhau. Tổng quãng đường 2 xe đi được bằng đúng quãng đường cần đi của 2 xe. + Nếu hai phương tiện chuyển động cùng chiều từ hai địa điểm khác nhau là A và B, xe từ A chuyển động nhanh hơn xe từ B thì khi xe từ A đuổi kịp xe từ B ta luôn có hiệu quãng đường đi được của xe từ A với quãng đường đi được của xe từ B bằng quãng đường AB. + Đối với (Ca nô, tàu xuồng) chuyển động trên dòng nước: Ta cần chú ý: Khi đi xuôi dòng: Vận tốc ca nô = Vận tốc riêng + Vận tốc dòng nước. Khi đi ngược dòng: Vận tốc ca nô = Vận tốc riêng – Vận tốc dòng nước. Vận tốc của dòng nước là vận tốc của một vật trôi tự nhiên theo dòng nước (Vận tốc riêng của vật đó bằng 0). BÀI TOÁN LIÊN QUAN ĐẾN NĂNG SUẤT LAO ĐỘNG, CÔNG VIỆC. Ta cần chú ý: Khi giải các bài toán liên quan đến năng suất thì liên hệ giữa ba đại lượng là: Khối lượng công việc = năng suất lao động × thời gian. BÀI TẬP RÈN LUYỆN
Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào lớp 10
Tài liệu gồm 09 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình bậc nhất hai ẩn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. Kiến thức cần nhớ Hệ phương trình bậc nhất hai ẩn là hệ phương trình có dạng: ax by c ax by c. + Cặp số x y 0 0 được gọi là một nghiệm của hệ phương trình nếu nó là nghiệm chung của cả hai phương trình đó. + Hệ có thể có nghiệm duy nhất, vô nghiệm hoặc vô số nghiệm tùy theo vị trí tương đối của hai đường thẳng biểu diễn nghiệm của hai phương trình. + Phương pháp giải hệ: Chúng ta thường dùng phương pháp thế hoặc phương pháp cộng đại số để khử bớt một ẩn, từ đó sẽ giải được hệ. Một số ví dụ
Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào lớp 10
Tài liệu gồm 31 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hàm số bậc nhất và hàm số bậc hai, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. Vấn đề 1 : HÀM SỐ BẬC NHẤT. 1. Định nghĩa: + Hàm số bậc nhất là hàm số được cho bởi công thức: y ax b trong đó a và b là các số thực cho trước và a ≠ 0. + Khi b = 0 thì hàm số bậc nhất trở thành hàm số y ax biểu thị tương quan tỉ lện thuận giữa y và x. 2. Tính chất: a) Hàm số bậc nhất xác định với mọi giá trị x R. b) Trên tập số thực, hàm số y ax b đồng biến khi a > 0 và nghịch biến khi a < 0. 3. Đồ thị hàm số y ax b với (a ≠ 0). + Đồ thị hàm số y ax b là đường thẳng cắt trục tung tại điểm có tung độ bằng b và cắt trục hoành tại điểm có hoành độ bằng b a. + a gọi là hệ số góc của đường thẳng y ax b. 4. Cách vẽ đồ thị hàm số y ax b. + Vẽ hai điểm phân biệt của đồ thị rồi vẽ đường thẳng đi qua 2 điểm. + Thường vẽ đường thẳng đi qua 2 giao điểm của đồ thị với các trục tọa độ. 5. Kiến thức bổ sung. Trong mặt phẳng tọa độ cho hai điểm Ax y Bx y thì 2 2 AB x x y y. Điểm M xy là trung điểm của AB thì 12 12 ; 2 2. 6. Điều kiện để hai đường thẳng song song hai đường thẳng vuông góc. Cho hai đường thẳng d y ax b 1 và đường thẳng d y ax b 2 với a a. Vấn đề 2 : HÀM SỐ BẬC HAI. Hàm số 2 y ax (a ≠ 0): Hàm số xác định với mọi số thực x. Tính chất biến thiên: + Nếu a > 0 thì hàm số đồng biến khi x > 0 nghịch biến khi x < 0. + Nếu a < 0 thì hàm đồng biến khi x < 0 nghịch biến khi x > 0. Đồ thị hàm số là một đường Parabol nhận gốc tọa độ O làm đỉnh, nhận trục tung làm trục đối xứng. Khi a > 0 thì Parabol có bề lõm quay lên trên, khi a < 0 thì Parabol có bề lõm quay xuống dưới. Đối với phương trình bậc hai 2 ax bx c a 0 0 có biệt thức 2 ∆ b ac 4. Nếu ∆ < 0 thì phương trình vô nghiệm. Nếu ∆ = 0 thì phương trình có nghiệm kép 2 b x a. Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: 1 2 b x a.
Chuyên đề biến đổi đại số ôn thi vào lớp 10
Tài liệu gồm 31 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. KIẾN THỨC CẦN NHỚ 1.1 CĂN THỨC BẬC 2. Kiến thức cần nhớ: Căn bậc hai của số thực a là số thực x sao cho 2 x a. Cho số thực a không âm. Căn bậc hai số học của a kí hiệu là a là một số thực không âm x mà bình phương của nó bằng a. Với hai số thực không âm a b ta có: a b ab. Khi biến đổi các biểu thức liên quan đến căn thức bậc 2 ta cần lưu ý: phép khử căn thức ở mẫu; phép trục căn thức ở mẫu. 1.2 CĂN THỨC BẬC 3 – CĂN BẬC n. 1.2.1 CĂN THỨC BẬC 3. Kiến thức cần nhớ: Căn bậc 3 của một số a kí hiệu là 3 a là số x sao cho 3 x a. Mỗi số thực a đều có duy nhất một căn bậc 3. 1.2.2 CĂN THỨC BẬC n. Cho số a Rn Nn 2. Căn bậc n của một số a là một số mà lũy thừa bậc n của nó bằng a. Trường hợp n là số lẻ: n k kN 2 1. Mọi số thực a đều có một căn bậc lẻ duy nhất. Trường hợp n là số chẵn: n kk N 2. Mọi số thực a > 0 đều có hai căn bậc chẵn đối nhau. Căn bậc chẵn dương kí hiệu là 2k a (gọi là căn bậc 2k số học của a). Căn bậc chẵn âm kí hiệu là 2k a 2 0 k ax x và 2k x a. Mọi số thực a < 0 đều không có căn bậc chẵn. MỘT SỐ VÍ DỤ MỘT SỐ BÀI TẬP RÈN LUYỆN