Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)

Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Vào ngày thứ Ba, ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán dành cho năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn những học sinh đạt yêu cầu về kiến thức, để chuẩn bị cho một năm học mới đầy hứng khởi. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên Đại học Sư phạm Hà Nội (đề chung) được sử dụng cho tất cả thí sinh dự thi vào trường. Đề thi bao gồm 1 trang với 5 bài toán, thí sinh phải hoàn thành bài thi trong thời gian 120 phút. Chi tiết đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) bao gồm: Trên quãng đường AB có độ dài 20km, bạn An và bạn Bình đi bộ từ 2 hướng khác nhau. Sau 2 giờ, họ gặp nhau tại C và nghỉ 15 phút. Sau đó, họ tiếp tục hành trình với vận tốc khác nhau và An đến B sớm hơn Bình đến A 48 phút. Yêu cầu: Tính vận tốc của An trên đoạn AC. Cho đường tròn (O) ngoại tiếp tam giác ABC. Xác định điểm A’ và C’ trên đường tròn sao cho A1C1 cắt đường tròn (O) tại A’ và C’ (với A1 nằm giữa A’ và C1). Tìm mối quan hệ giữa HC1, A1C và A1C1, chứng minh ba điểm B, B’, O thẳng hàng, và tính A’C’ khi tam giác ABC là tam giác đều. Xác định hệ số của đa thức P(x) và Q(x) để thỏa mãn các điều kiện cần đưa ra. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) không chỉ đánh giá kiến thức của thí sinh mà còn đặt ra những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của học sinh. Hy vọng rằng các thí sinh sẽ có được một kỳ thi tuyển sinh thành công và đạt kết quả tốt nhất.

Nguồn: sytu.vn

Đọc Sách

Khảo sát Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Trương Công Định - Hải Phòng
Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 trường THCS Trương Công Định, quận Lê Chân, thành phố Hải Phòng gồm 2 trang, đề gồm 5 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề khảo sát Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Trương Công Định – Hải Phòng : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m + 3)x – 2m + 2 (m là tham số và m thuộc R). a) Với m = 5, hãy tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d). b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt nằm cùng phía bên phải trục tung. + Theo Điều 6 Nghị định 171/2013/NĐ-CP về xử phạt vi phạm hành chính trong lĩnh vực giao thông đường bộ và đường sắt. Cụ thể: Đối với ôtô: – Phạt tiền từ 600.000 đồng đến 800.000 đồng nếu điều khiển xe chạy quá tốc độ quy định từ 05 km/h đến dưới 10 km/h. – Phạt tiền từ 2 triệu đồng đến 3 triệu đồng nếu điều khiển xe chạy quá tốc độ quay định từ 10 km/h đến 20 km/h. – Phạt tiền từ 4 triệu đồng đến 6 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 20 km/h đến 35 km/h. – Phạt tiền từ 7 triệu đồng đến 8 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 35 km/h; điều khiển xe đi ngược chiều trên đường cao tốc, trừ các xe ưu tiên đang đi làm nhiệm vụ khẩn cấp theo quy định. [ads] Áp dụng các quy định trên để giải bài toán sau: Một cơ quan tổ chức di du lịch bằng 2 xe ô tô qua đường cao tốc Hải Phòng – Hà Nội dài 120km. Hai xe cùng khởi hành một lúc tại đầu đường cao tốc phía Hải Phòng, xe thứ nhất chạy chậm hơn xe thứ hai 44 km/h do đó xe thứ nhất đến hết đường cao tốc chậm hơn xe thứ hai là 22 phút. Biết rằng khi đến cuối đường có trạm kiểm soát tốc độ, hỏi khi đó có xe nào trong hai xe bị xử phạt vi phạm tốc độ hay không? Mức xử phạt là bao nhiêu tiền? (Giả sử vận tốc hai xe không đổi trên đường cao tốc, vận tốc tối đa cho phép là 120 km/h). + Cho hình chữ nhật ABCD có BC = 3cm, AB = 4cm. Quay hình chữ nhật đó một vòng quanh AB được một hình trụ. Tính diện tích xung quanh của hình trụ đó.
Tuyển tập 50 đề luyện thi tuyển sinh lớp 10 THPT sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu tuyển tập 50 đề thi đại trà – toán chung (toán điều kiện) theo motip đề thi tuyển sinh vào lớp 10 THPT sở Giáo dục và Đào tạo tỉnh Thái Bình, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Đề thi tuyển sinh lớp 10 THPT có nội dung chương trình chủ yếu trong phạm vi lớp 9 THCS, kết hợp tổng hòa các kiến thức cơ bản từ các lớp 6, 7, 8, 9, cụ thể các nội dung chính được đề cập như sau: 1. Rút gọn căn thức và các bài toán liên quan. 2. Giải, biện luận hệ phương trình bậc nhất một ẩn và các bài toán liên quan. 3. Hàm số bậc nhất và đồ thị hàm số bậc nhất (đường thẳng) và các bài toán liên quan. Bài toán là tiền thân của hình học giải tích cấp THPT. 4. Phương trình bậc hai và các bài toán liên quan. Hệ thức Viet và các đẳng thức, bất đẳng thức chế tác xuất phát từ hệ thức Viet. 5. Parabol đơn giản và các bài toán liên quan. 6. Bài toán hình học tổng hợp. 7. Bài toán phân loại thí sinh giỏi, năng khiếu. [ads] Đối với đề thi tuyển sinh Toán chung (Toán điều kiện), kỳ thi tuyển sinh THPT Chuyên tại các tỉnh miền Bắc và một số trường chuyên khác, cấu trúc đề thi tương tự đề thi đại trà nhưng mức độ nâng cao hơn, đặc thù là bài toán phương trình – hệ phương trình không mẫu mực sẽ lồng ghép chốt chặn tại giữa bài thi, mục đích lựa chọn được các em học sinh ưu tú hơn, dù rằng các bài toán hình học và bài toán phân loại cuối cùng vẫn là bắt buộc. Tài liệu tuyển tập 50 đề thi dưới đây được làm hoàn toàn mới so với các đề thi tuyển sinh trước đây, cấu trúc không thay đổi, có đề phòng một số kiến thức vô tình bị lãng quên, xem nhẹ trong chương trình lớp 9 THCS.
Đề minh họa Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Khánh Hòa
Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán, đề được biên soạn theo cấu trúc tương tự đề các năm học trước, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài trong thời gian 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Khánh Hòa : + Trên mặt phẳng tọa độ Oxy, cho điểm A(3;-2) và đường thẳng d có phương trình y = x – m với m là tham số. a) Tìm m để điểm N thuộc đường thẳng d. b) Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y = -4x^2. [ads] + Cho AB và CD là hai đường kính khác nhau của đường tròn (O;R). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại E và F. a) Chứng minh góc BAD = BFA. b) Chứng minh tứ giác CDEF là tứ giác nội tiếp. c) Gọi I, J lần lượt là trung điểm của các đoạn thẳng AE, AF và H là trực tâm của tam giác BIJ. Tính độ dài đoạn thẳng AH theo R.
Đề tuyển sinh vào 10 môn Toán năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 07 tháng 07 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.