Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; kỳ thi được diễn ra vào ngày 29 và 30 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Với số thực a, xét dãy số (un) xác định bởi. a) Chứng minh rằng với mọi số a hữu tỷ, các số hạng của dãy số (un) luôn xác định. b) Với a thuộc [0;1), chứng minh rằng dãy số (vn) xác định bởi vn = n2un với mọi n = 1; 2; … luôn có giới hạn hữu hạn, tìm giới hạn đó. + Cho bảng ô vuông 12 × 12 được chia thành 144 ô phân biệt. Một hình chữ Z (nằm dọc hoặc nằm ngang, gồm 4 ô vuông) được tạo thành từ bảng 3 × 2 hoặc 2 × 3 cắt bỏ đi hai ô ở góc đối diện như các hình bên dưới. a) Người ta muốn tô màu mỗi ô của bảng 12 × 12 ở trên bởi 2 màu xanh, đỏ sao cho trong mỗi hình chữ Z bất kỳ, luôn có đúng 2 ô xanh và 2 ô đỏ. Chứng minh rằng nếu trên cột 1 có hai ô liên tiếp được tô đỏ thì toàn bộ các ô ở cột 12 đều được tô xanh. b) Tính số cách điền các số từ 1; 2; 3; …; 144 lên bảng và mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, số lượng số chẵn bằng số lượng số lẻ. c) Hỏi có tồn tại hay không cách điền số các số từ 1; 2; 3; …; 144 lên bảng, mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, tổng các số trên đó đều chia hết cho 3? + Xét tam giác ABC nhọn, không cân có AB < AC nội tiếp trong đường tròn (O) với B, C cố định và A thay đổi trên (O). Các đường cao AD, BE, CF đồng quy tại H. Gọi M là trung điểm của BC. Lấy I đối xứng với A qua EF và đường tròn ngoại tiếp tam giác IMO cắt lại AM tại L. a) Chứng minh rằng L luôn thuộc một đường tròn cố định khi A di động trên (O). b) Đường tròn ngoại tiếp tam giác AHC cắt lại BC tại R, EF cắt BC tại T, AR cắt DE tại G. Chứng minh rằng nếu G là trung điểm của đoạn thẳng DE thì F là trung điểm của đoạn thẳng ET.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2022 - 2023 sở GDĐT Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x3 − 3×2 + mx + 1 có đồ thị (Cm) với m là tham số. 1) Tìm tất cả các giá trị thực của m để đồ thị (Cm) có hai điểm cực trị. 2) Khi (Cm) có hai điểm cực trị A và B, tìm m để khoảng cách từ điểm là I đến đường thẳng AB lớn nhất. + Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn (O). Gọi S là tập hợp các đường thẳng đi qua 2 đỉnh bất kỳ của đa giác. Chọn ngẫu nhiên hai đường thẳng từ tập S. Tìm xác suất để chọn được hai đường thẳng có giao điểm nằm trong đường tròn (O). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = AB = a, SB = SD. Lấy M là điểm tùy ý trên đoạn thẳng OA (M khác O và A). Mặt phẳng (a) qua M, song song với SA và BD, cắt AB, SB, SD, AD lần lượt tại E, F, G, H. 1) Tứ giác EFGH là hình gì? Vì sao? 2) Xác định vị trí của M để diện tích tứ giác EFGH đạt giá trị lớn nhất.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GDĐT Ninh Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; đề thi gồm 05 câu tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Gieo 5 con súc sắc cân đối, đồng chất. Kí hiệu xi (1 ≤ xi ≤ 6) là số chấm trên mặt xuất hiện của con súc sắc thứ i (i = 1, 2, 3, 4, 5). Tính xác suất để một trong các số x1, x2, x3, x4, x5 bằng tổng các số còn lại. + Cho tam giác ABC nhọn, không cân. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC (khác B, C, D). Kẻ MK là đường kính của đường tròn ngoại tiếp tam giác BKF và NK là đường kính của đường tròn ngoại tiếp tam giác CKE. Gọi L là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CKE. 1) Chứng minh rằng năm điểm A, F, H, L, E cùng nằm trên một đường tròn. 2) Chứng minh rằng bốn điểm M, H, L, N thẳng hàng. + Tìm tất cả các số có ba chữ số sao cho mỗi số gấp 22 lần tổng các chữ số đó.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.