Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8

Tài liệu gồm 57 trang, hướng dẫn giải các dạng toán chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8, giúp học sinh lớp 8 ôn tập, rèn luyện để chuẩn bị cho kì thi học sinh giỏi môn Toán 8 các cấp. A. Giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức Nếu với mọi giá trị của biến thuộc một khoảng xác định nào đó mà giá trị của biểu thức A luôn luôn lớn hơn hoặc bằng (nhỏ hơn hoặc bằng) một hằng số k và tồn tại một giá trị của biến để A có giá trị bằng k thì k gọi là giá trị nhỏ nhất (giá trị lớn nhất) của biểu thức A ứng với các giá trị của biểu thức thuộc khoảng xác định nói trên. B. Các dạng toán Dạng 1 : Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. Phương pháp: Áp dụng hằng đẳng thức số 1 và số 2. Dạng 2 : Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. Phương pháp: Ta đưa về dạng tổng bình phương. Dạng 3 : Đa thức có từ 2 biến trở lên. Phương pháp: Đa số các biểu thức có dạng 2 2 F x y ax by cxy dx ey h a b c. Ta đưa dần các biến vào trong hằng đẳng thức 2 2 2 a ab b a b như sau 2 2 F x y mK x y nG y r hoặc 2 2 F x y mK x y nH x r. Trong đó G y H x là biểu thức bậc nhất đối với biến, còn K x y px qy k cũng là biểu thức bậc nhất đối với cả hai biến x và y. Cụ thể: Ta biến đổi (1) để chuyển về dạng (2) như sau với 2 a ac b 0 4 0. Nếu m > 0, n > 0 thì ta tìm được giá trị nhỏ nhất. Nếu m < 0, n < 0 thì ta tìm được giá trị lớn nhất. Dễ thấy rằng luôn tồn tại (x;y) để có dấu của đẳng thức, như vậy ta sẽ tìm được cực trị của đa thức đã cho. Trong cả hai trường hợp trên: Nếu r = 0 thì phương trình F(x;y) = 0 có nghiệm. Nếu F x y r thì không có nào thỏa mãn F(x;y) = 0. Nếu a ac b r F x y phân tích được tích của hai nhân tử, giúp ta giải được các bài toán khác. Dạng 4 : Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. Phương pháp: – Dồn biến từ điều kiền rồi thay vào biểu thức. – Biến đổi biểu thức thành các thành phần có chứa điều kiện để thay thế. – Sử dụng thêm một số bất đẳng thức phụ. Dạng 5 : Phương pháp đổi biến số. Phương pháp: – Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. – Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. – Sử dụng các hằng đẳng thức. Dạng 6 : Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. Dạng 7 : Dạng phân thức. A. Phân thức có tử là hằng số, mẫu là tam thức bậc hai. Phương pháp: Biểu thức dạng này đạt giá trị nhỏ nhất khi mẫu đạt giá trị lớn nhất. B. Phân thức có mẫu là bình phương của một nhị thức. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. C. Tìm GTLN – GTNN của phân thức có dạng khác. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. 1. Bậc của tử nhỏ hơn bậc của mẫu. 2. Bậc của tử bằng bậc của mẫu.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải toán bằng cách lập phương trình
Nội dung Chuyên đề giải toán bằng cách lập phương trình Bản PDF - Nội dung bài viết Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Tài liệu này bao gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, từ cơ bản đến nâng cao, trong chuyên đề giải toán bằng cách lập phương trình. Bạn sẽ được tuyển chọn các bài tập có độ khó phù hợp, và hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. Kiến Thức Cần Nhớ Bước 1: Lập phương trình: Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. Biểu diễn các đại lượng chưa biết theo ẩn và đã biết. Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra nghiệm của phương trình để xác định nghiệm nào thỏa mãn điều kiện của ẩn. II. Bài Tập Minh Họa Phương pháp chung: Bước 1: Kẻ bảng nếu cần, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. Bước 2: Giải thích từng ô trong bảng để lập phương trình bậc hai. Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: Dạng 1: Toán chuyển động. Dạng 2: Toán năng suất. Dạng 3: Toán làm chung công việc. Dạng 4: Toán có nội dung hình học. Dạng 5: Dạng toán có chứa tham số. Dạng 6: Toán về tỉ lệ chia phần. Dạng 7: Dạng toán liên quan đến số học. Dạng 8: Dạng toán có nội dung vật lý, hóa học. Hãy sẵn sàng thách thức bản thân và rèn luyện kỹ năng giải toán bằng cách lập phương trình với tài liệu hữu ích này!
Chuyên đề phương trình chứa ẩn ở mẫu
Nội dung Chuyên đề phương trình chứa ẩn ở mẫu Bản PDF - Nội dung bài viết Chuyên đề phương trình chứa ẩn ở mẫu Chuyên đề phương trình chứa ẩn ở mẫu Tài liệu này bao gồm 16 trang, tóm tắt lý thuyết cơ bản về phương trình chứa ẩn ở mẫu, hướng dẫn cách phân dạng và giải các dạng toán liên quan. Bên cạnh đó, sách còn tuyển chọn các bài tập từ dễ đến khó để giúp học sinh nắm vững kiến thức. Mỗi bài tập đi kèm đều có đáp án và lời giải chi tiết, giúp học sinh tự tin trong quá trình học tập. Trước khi giải phương trình chứa ẩn ở mẫu, chúng ta cần nhớ các bước đơn giản sau: Bước 1: Tìm điều kiện xác định (ĐKXĐ) của phương trình. Bước 2: Quy đồng mẫu hai vế của phương trình. Bước 3: Giải phương trình đã quy đồng mẫu. Bước 4: Xác định nghiệm của phương trình từ các giá trị tìm được ở bước 3. Để minh họa phương pháp giải phương trình chứa ẩn ở mẫu, chúng ta sẽ vận dụng các bài tập cụ thể, biến đổi chúng thành phương trình bậc nhất để giải. Việc này sẽ giúp học sinh hiểu rõ hơn về cách giải quyết các bài toán đề xuất.
Chuyên đề phương trình tích
Nội dung Chuyên đề phương trình tích Bản PDF - Nội dung bài viết Chuyên Đề Phương Trình Tích Chuyên Đề Phương Trình Tích Tài liệu này bao gồm 17 trang, tóm tắt lý thuyết cần thiết về phương trình tích, phân tích dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề phương trình tích. Để giải phương trình tích (một ẩn), chúng ta cần tìm nghiệm cho từng phần tử có thể làm cho toán tử bằng 0. Các phương pháp phân tích đa thức thành nhân tử đóng vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Bên cạnh đó, việc đặt ẩn phụ cũng giúp cho quá trình lời giải trở nên gọn gàng hơn. Trong phần II, ta sẽ vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích để đưa phương trình đã cho về dạng phương trình bậc nhất đã biết cách giải. Bằng việc hiểu và áp dụng những kiến thức này, học sinh sẽ có thêm sự hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn.
Chuyên đề mở đầu về phương trình
Nội dung Chuyên đề mở đầu về phương trình Bản PDF - Nội dung bài viết Chuyên đề mở đầu về phương trình Chuyên đề mở đầu về phương trình Tài liệu này bao gồm 18 trang chứa thông tin tóm tắt về lý thuyết cơ bản về phương trình như: phân dạng, cách giải các dạng toán, và các bài tập từ cơ bản đến nâng cao. Đặc biệt, tài liệu này được tuyển chọn kỹ lưỡng để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 8 chương 3: Phương trình bậc nhất một ẩn. Phần A của tài liệu này bao gồm bài giảng củng cố kiến thức cơ bản về phương trình, bao gồm các nội dung như phương trình một ẩn, cách giải phương trình, và phương trình tương đương. Phần B của tài liệu chứa các bài tập minh họa cơ bản trong đề tài này, bao gồm giải phương trình và hai phương trình tương đương. Phần C là phần bài tập nâng cao tổng hợp, giúp học sinh thử thách và nâng cao kiến thức về phương trình. Phần D chứa phiếu bài tập tự luyện, giúp học sinh tự kiểm tra và đánh giá kiến thức của mình sau khi học xong chuyên đề này.