Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề bội và ước của một số nguyên

Nội dung Tài liệu dạy thêm học thêm chuyên đề bội và ước của một số nguyên Bản PDF Tài liệu dạy thêm và học thêm chuyên đề bội và ước của một số nguyên là một tập hợp các tài liệu hữu ích được thiết kế nhằm giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này gồm 14 trang, trong đó có tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề bội và ước của một số nguyên.

I. Tóm tắt lý thuyết:
- Trong phần tóm tắt lý thuyết, tài liệu tổng hợp các kiến thức cơ bản về bội và ước của một số nguyên. Nó giúp học sinh nắm vững khái niệm và các tính chất quan trọng liên quan đến chủ đề này.

II. Các dạng bài:
1. Tìm bội và ước của số nguyên:
- Phần này giúp học sinh hiểu về tập hợp các bội và ước của một số nguyên a. Chẳng hạn, tập hợp các bội của số a được ký hiệu là ka, với k là số nguyên. Trong khi đó, tập hợp các ước của số a được ký hiệu là aZ, với Z là số nguyên không âm. Tìm bội và ước của một số nguyên có thể được thực hiện bằng cách tìm các ước số nguyên dương của phần số tự nhiên a và từ đó xác định số ước nguyên của a.
- Số ước nguyên của một số mũ n và tất cả các ước số của nó cũng được đề cập đến trong phần này.

2. Vận dụng tính chất chia hết của số nguyên:
- Phần này giúp học sinh học cách vận dụng tính chất chia hết để chứng minh một biểu thức A có chia hết cho một số nguyên a hay không. Thông qua các ví dụ, học sinh sẽ nắm được cách sử dụng tính chất chia hết của số nguyên với các dạng thành phần khác nhau của A, bao gồm tích, tổng và hiệu.

3. Tìm số nguyên thỏa mãn điều kiện về chia hết:
- Phần này hướng dẫn học sinh tìm số nguyên x thỏa mãn một điều kiện chia hết nhất định. Nguyên tắc áp dụng ở đây là: nếu tổng của hai số a và b chia hết cho một số c và a chia hết cho c, thì b cũng chia hết cho c.

Tài liệu này được thiết kế theo định dạng file word để thuận tiện cho việc sử dụng bởi các giáo viên. Nó sẽ giúp giáo viên và học sinh có thêm tư liệu tham khảo và hỗ trợ trong quá trình học tập và dạy thêm.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề so sánh phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề so sánh phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững cách so sánh hai phân số cùng mẫu, hai phân số khác mẫu. + Hiểu khái niệm phân số âm và phân số dương. Kĩ năng: + Biết so sánh hai phân số. + Biết cách sắp xếp dãy các phân số theo thứ tự tăng dần hoặc giảm dần. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : So sánh các phân số cùng mẫu. Bài toán 1. So sánh các phân số. + Bước 1. Viết phân số có mẫu âm (nếu có) thành phân số có mẫu dương. + Bước 2. So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn. Bài toán 2. Sắp xếp các phân số. + Bước 1. So sánh các phân số. + Bước 2. Sắp xếp các phân số theo thứ tự yêu cầu của bài toán. Dạng 2 : So sánh các phân số không cùng mẫu. Cách 1. Quy đồng mẫu. + Bước 1. Quy đồng mẫu số các phân số (biến đổi thành các phân số có cùng mẫu dương). + Bước 2. So sánh các phân số có cùng mẫu dương. Cách 2. Quy đồng tử. Cách 3. Sử dụng phân số trung gian. Ngoài ra, còn một số phương pháp khác để so sánh hai phân số: + Rút gọn phân số. + Sử dụng định nghĩa hai phân số bằng nhau.
Chuyên đề quy đồng mẫu nhiều phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quy đồng mẫu nhiều phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được thế nào là quy đồng mẫu nhiều phân số. + Nắm được các bước tiến hành quy đồng mẫu nhiều phân số. Kĩ năng: + Biết cách quy đồng được mẫu nhiều phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Quy đồng mẫu các phân số. Muốn quy đồng mẫu số nhiều phân số ta làm như sau: + Bước 1. Tìm một bội chung của các mẫu (thường là BCNN) để làm mẫu chung. + Bước 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu). + Bước 3. Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng. Chú ý: Trước khi quy đồng cần viết phân số dưới dạng phân số có mẫu dương. Nên rút gọn các phân số trước khi quy đồng. Dạng 2 : Bài toán đưa về việc quy đồng mẫu số các phân số. Để kiểm tra hai phân số có bằng nhau hay không ta đưa phân số về chung mẫu. Hai phân số có tử mẫu bằng nhau thì bằng nhau. Hai cách có thể dùng để đưa hai phân số về chung mẫu là: + Cách 1. Rút gọn phân số. + Cách 2. Quy đồng mẫu số. Để tìm số nguyên x trong đẳng thức về phân số ta có thể quy đồng mẫu sau đó tìm x để các tử số bằng nhau.
Chuyên đề tính chất cơ bản của phân số, rút gọn phân số
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất cơ bản của phân số, rút gọn phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững tính chất cơ bản của phân số. + Nắm được cách rút gọn phân số. + Hiểu được khái niệm phân số tối giản. Kĩ năng: + Viết được phân số có mẫu âm thành phân số bằng nó có mẫu dương. + Vận dụng tính chất của phân số để so sánh, rút gọn các phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm số chưa biết trong đẳng thức của phân số. Nhân hoặc chia cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Dạng 2 . Rút gọn phân số – rút gọn biểu thức dạng phân số. Để rút gọn phân số ta chia cả tử và mẫu của nó cho một ước chung (khác 1 và -1) của chúng. Khi nói rút gọn một phân số, ta thường hiểu là đưa phân số đó về dạng tối giản. Để rút gọn phân số 0 a b b thành phân số tối giản, ta làm như sau: + Bước 1. Tìm ƯCLN(a;b) = n. + Bước 2. Chia cả tử và mẫu cho n. Dạng 3 . Phân số bằng nhau. Dạng 4 . Biểu diễn các số đo dưới dạng phân số với đơn vị cho trước. Dựa vào tỉ lệ của các đại lượng mà ta chuyển về dạng phân số. Dạng 5 . Phân số tối giản. Phân số a/b tối giản nếu |a| và |b| là hai số nguyên tố cùng nhau, hay ƯC(a;b) = {-1;1}. Chứng minh phân số a/b tối giản: Ta chứng minh ƯCLN(a;b) = 1.
Chuyên đề phân số bằng nhau
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phân số bằng nhau, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được khái niệm hai phân số bằng nhau. Kĩ năng: + Nhận dạng được hai phân số bằng nhau, không bằng nhau. + Lập được các cặp phân số bằng nhau từ một đẳng thức tích. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết các cặp phân số bằng nhau. Dạng 2 . Tìm số chưa biết trong đẳng thức của hai phân số. Dạng 3 . Viết các phân số bằng nhau từ đẳng thức đã cho.