Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Nông Cống 1 Thanh Hóa

Nội dung Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Nông Cống 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi lần 3 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Nông Cống 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG lần 3 Toán lớp 12 năm 2022 – 2023 trường THPT Nông Cống 1 – Thanh Hóa : + Việt và Nam chơi cờ. Trong một ván cờ, xác suất Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi khi có người thắng, người thua. Tính xác suất để hai bạn dừng chơi sau hai ván cờ. + Ngày mùng 03/03/2015 anh A vay ngân hàng 50 triêu đồng với lãi suất kép là 0,6% / tháng theo thể thức như sau: đúng ngày mùng 3 hàng tháng kể từ một tháng sau khi vay, ngân hàng sẽ tính số tiền nợ của anh bằng số tiền nợ tháng trước cộng với tiền lãi của số tiền nợ đó. Sau khi vay anh A trả nợ như sau: đúng ngày mùng 3 hàng tháng kể từ một tháng sau khi vay anh A đều đến trả ngân hàng 3 triệu đồng. Tính số tháng mà anh A trả được hết nợ ngân hàng, kể từ một tháng sau khi vay. Biết rằng lãi suất không đổi trong suốt quá trình vay. A. 15 tháng. B. 19 tháng. C. 16 tháng. D. 18 tháng. + Hai chiếc ly đựng chất lỏng giống hệt nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thứ hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng – lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01dm). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2019 2020 sở GD ĐT Bến Tre
Nội dung Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2019 2020 sở GD ĐT Bến Tre Bản PDF Thứ Năm ngày 22 tháng 08 năm 2019, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán lớp 12 khối Trung học Phổ thông năm học 2019 – 2020. Đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Bến Tre gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. [ads] Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Bến Tre : + Sắp xếp 1650 học sinh (cả nam và nữ) thành 22 hàng ngang và 75 hàng dọc. Biết rằng với hai hàng dọc bất kì, số lần xảy ra hai học sinh trong cùng hàng ngang có cùng giới tính không vượt quá 11. Chứng minh rằng số học sinh nam không vượt quá 928 em. + Tìm số nguyên nhỏ nhất n sao cho với n số thực phân biệt a1, a2 … an lấy từ đoạn [1;1000] luôn tồn tại ai, aj thỏa 0 < ai – aj < 1+ 3√aiaj với i, j thuộc {1, 2 … n}. + Gọi các điểm I, H lần lượt là tâm đường tròn nội tiếp, trực tâm của tam giác nhọn ABC, B1 và C1 lần lượt là trung điểm của AC và AB, tia B1I cắt cạnh AB tại B2 (B2 khác B1), tia C1I cắt phần kéo dài của AC tại C2, B2C2 cắt BC tại K, A1 là tâm đường tròn ngoại tiếp tam giác BHC. Chứng minh rằng: ba điểm I, A, A1 thẳng hàng khi và chỉ khi S_BKB2 = S_CKC2. (trong đó: S_BKB2 và S_CKC2 lần lượt là diện tích tam giác BKB2 và CKC2).
Đề chọn đội tuyển học sinh giỏi Toán năm 2018 2019 sở GD và ĐT TP. HCM
Nội dung Đề chọn đội tuyển học sinh giỏi Toán năm 2018 2019 sở GD và ĐT TP. HCM Bản PDF Kỳ thi chọn đội tuyển học sinh giỏi Toán năm 2018 – 2019 sở GD và ĐT TP. HCM được diễn ra trong vòng 2 ngày 26 và 27 tháng 09 năm 2018 nhằm tuyển lựa những học sinh xuất sắc môn Toán tham dự kỳ thi HSG cấp Quốc gia. Mỗi ngày thi gồm một đề tự luận với 4 bài toán, học sinh làm bài trong thời gian 180 phút.
Đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT KonTum
Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT KonTum Bản PDF Nhằm tuyển chọn các em học sinh có năng lực môn Toán của tỉnh KonTum để tham dự kỳ thi HSG Toán Quốc gia năm học 2018 – 2019, sở Giáo dục và Đào tạo KonTum tiến hành tổ chức kỳ thi học sinh giỏi cấp tỉnh, đề được biên soạn theo hình thức tự luận với 7 câu hỏi và bài tập, thang điểm thi 20 điểm, kỳ thi được tổ chức ngày 18 tháng 08 năm 2018, đề thi có lời giải chi tiết. Nội dung đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT KonTum : + Câu 1: Hệ phương trình. (3 điểm) + Câu 2: Chứng minh hệ thức lượng giác trong tam giác. (3 điểm) + Câu 3: Dãy số truy hồi với các yêu cầu chứng minh hoặc tìm số hạng tổng quát hoặc tính giới hạn. (2 điểm) + Câu 4: Tổ hợp. (3 điểm) + Câu 5: Hình học phẳng: Chứng minh tính chất hình học. Vận dụng các kiến thức chuyên. (5 điểm) + Câu 6: Số học. (2 điểm) + Câu 7: Bất đẳng thức. (2 điểm)
Đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp
Nội dung Đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến bạn đọc đề Toán chọn đội tuyển học sinh giỏi dự thi cấp Quốc gia năm 2019 của sở GD và ĐT Đồng Tháp, đề gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thí sinh làm bài trong 180 phút, kỳ thi được tổ chức ngày 12/07/2018, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp : + Cho bảng ô vuông gồm m hàng và n cột. Tại ô góc trên bên trái của bảng người ta đặt một quân cờ. Hai người chơi luân phiên di chuyển quân cờ, mỗi lượt di chuyển chỉ di chuyển quân cờ sang phải một ô hoặc xuống dưới một ô. Người chơi nào đến lượt mình không di chuyển được quân cờ thì thua. Xác định điều kiện của m n, để người thực hiện lượt chơi đầu tiên luôn là người thắng. [ads] + Cho đường thẳng d và điểm A cố định không thuộc d, H là hình chiếu của A trên d. Các điểm B, C thay đổi trên d sao cho HB.HC = -1. Đường tròn đường kính AH cắt AB, AC lần lượt tại M, N. Chứng minh đường thẳng MN đi qua một điểm cố định. Gọi O là tâm đường tròn ngoại tiếp tam giác BMC. Chứng minh O chạy trên một đường thẳng cố định. + Xét phương trình x^31 + y^5 = z^2018. Chứng minh rằng tồn tại vô số bộ ba số nguyên x, y, z thỏa mãn phương trình trên. Có tồn tại hay không bộ ba số nguyên dương x, y, z thoả mãn phương trình trên?