Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 08 tháng 01 năm 2023, với đề thi có đáp án và lời giải chi tiết do các tác giả Võ Quốc Bá Cẩn, Trần Đức Hiếu, Đào Phúc Long thực hiện. Dưới đây là một số câu hỏi trong đề thi: Với a, b, c là các số nguyên dương thỏa mãn điều kiện a + b + c = 16, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a + b)/c + (b + c)/a + (c + a)/b. Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại điểm S. Trên tia đối của tia CA lấy điểm M (M khác C). Chứng minh các điều sau: a) Đường thẳng ME là tiếp tuyến của đường tròn (O). b) EC là tia phân giác của góc FED. c) Góc SDK = 90. Cho đa giác đều A1A2...A2023. Gọi S là tập hợp gồm các trung điểm của các đoạn thẳng AiAj (1 < i < j < 2023) và M là tổng độ dài của tất cả các đoạn thẳng có hai đầu mút là hai điểm thuộc S. Gọi N là tổng độ dài của tất cả các đoạn thẳng AiAj (1 < i < j < 2023). Chứng minh rằng M < 10112N. Hy vọng rằng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Tìm số nguyên n sao cho C = n2 – 3n + 4 là số chính phương. b) Cho các số nguyên a, b, c thỏa mãn a + b + c = 2023. Chứng minh rằng a3 + b3 + c3 – 1 chia hết cho 6. + Cho tam giác ABC vuông tại A, Gọi D, E lần lượt là trung điểm của BC, AC. Đường thẳng qua C vuông góc với BC cắt DE tại F, H là hình chiếu của C lên BF. a) Chứng minh FH.FB = FE.FD. b) Chứng minh tam giác ABH đồng dạng với tam giác ECH. c) Gọi I là trung điểm của FE. Chứng minh A, H, I thẳng hàng. + Cho các số dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = 2 25 2 9 a ab b a c.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Vân Canh - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Vân Canh, tỉnh Bình Định; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Vân Canh – Bình Định : + Cho ∆ABC có đường phân giác trong AD. Trên tia đối của tia DA lấy điểm E sao cho ECD BAD. a. Chứng minh AD.DE = BD.CD. b. Chứng minh 2 AD AB.AC BD.CD. + Cho tam giác ABC nhọn và một điểm P thuộc miền trong tam giác. Gọi DEF theo thứ tự là hình chiếu của P trên các cạnh BC CA AB. a. Chứng minh 2 2 2 22 2 BD CE AF DC EA FB. b. Xác định vị trí điểm P trong ∆ABC để tổng 22 2 DC EA FB đạt giá trị nhỏ nhất. + Tìm hệ số a để đa thức f(x) = x3 – 8×2 + ax – 5 chia hết cho đa thức g(x) = x2 – 3x + 1.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Nguyễn Du - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Du, thành phố Đà Lạt, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 21 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Nguyễn Du – Lâm Đồng : + Bạn An mua một số quyển vở và bút máy hết tất cả là 102 nghìn đồng. Biết giá mỗi quyển vở là 12 nghìn đồng, giá mỗi cây bút là 10 nghìn đồng. Hỏi bạn An mua được bao nhiêu quyển vở và bao nhiêu cây bút? + Định mức giá điện sinh hoạt năm 2021 như sau: Số điện (kWh) Giá bán điện (đồng/kWh) Bậc 1: Từ 0 – 50 kWh 1.678 Bậc 2: Từ 51 – 100 kWh 1.734 Bậc 3: Từ 101 – 200 kWh 2.014 Bậc 4: Từ 201 – 300 kWh 2.536 Bậc 5: Từ 301 – 400 kWh 2.834 Bậc 6: Từ 401 kWh trở lên 2.927. Tiền điện được tính theo bậc, với thuế giá trị gia tăng (GTGT) 10%. a) Trong tháng 6/2021, nhà bạn Xuân sử dụng hết 230 kWh điện. Tính tiền điện nhà bạn Xuân phải trả. b) Cũng trong tháng đó, nhà bác Hạ đã phải trả 548 680 đồng tiền điện. Hỏi nhà bác Hạ đã sử dụng hết bao nhiêu kWh điện? + Từ tấm nhôm hình vuông cạnh 6 dm. Người ta muốn cắt một hình thang (phần tô đậm trong hình vẽ). Tìm tổng x y để diện tích hình thang cắt được nhỏ nhất.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 10 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Cho a, b là các số nguyên thỏa mãn a2 + 2b + 3 và b2 + 2a + 3 đều chia hết cho 5. Chứng minh a + b + 2023 chia hết cho 5. + Cho tam giác ABC nhọn, cân tại A, đường cao AM. Đường thẳng qua B và vuông góc với AB, cắt tia AM tại D. Lấy điểm F bất kì nằm giữa hai điểm B và M. Gọi E là hình chiếu vuông góc của A trên đường thẳng DF. 1) Chứng minh DE.DF = DM.DA và DBF = DEB. 2) Gọi O là trung điểm của AD. Đường thẳng qua O và vuông góc với EC, cắt EA tại S. Chúng minh tam giác EBF đồng dạng với tam giác SOE. 3) Gọi K là trung điểm của EF. Chứng minh CK vuông góc với SD. + Cho bảng ô vuông n x n. Ta tiến hành điền vào mỗi ô vuông 1 × 1 của bảng một số nguyên (các số được điền không nhất thiết phân biệt) thỏa mãn tổng các số trong mỗi mảng ô vuông 3 × 3 luôn dương, đồng thời tổng các số trong mỗi mảng ô vuông 4 × 4 luôn âm. a) Chỉ ra một cách điền số thỏa mãn với n = 5. b) Tìm điều kiện của n để tồn tại một cách điền số thỏa mãn.