Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 08 tháng 01 năm 2023, với đề thi có đáp án và lời giải chi tiết do các tác giả Võ Quốc Bá Cẩn, Trần Đức Hiếu, Đào Phúc Long thực hiện. Dưới đây là một số câu hỏi trong đề thi: Với a, b, c là các số nguyên dương thỏa mãn điều kiện a + b + c = 16, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a + b)/c + (b + c)/a + (c + a)/b. Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại điểm S. Trên tia đối của tia CA lấy điểm M (M khác C). Chứng minh các điều sau: a) Đường thẳng ME là tiếp tuyến của đường tròn (O). b) EC là tia phân giác của góc FED. c) Góc SDK = 90. Cho đa giác đều A1A2...A2023. Gọi S là tập hợp gồm các trung điểm của các đoạn thẳng AiAj (1 < i < j < 2023) và M là tổng độ dài của tất cả các đoạn thẳng có hai đầu mút là hai điểm thuộc S. Gọi N là tổng độ dài của tất cả các đoạn thẳng AiAj (1 < i < j < 2023). Chứng minh rằng M < 10112N. Hy vọng rằng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.