Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khái niệm hai tam giác đồng dạng

Nội dung Chuyên đề khái niệm hai tam giác đồng dạng Bản PDF - Nội dung bài viết Chuyên đề khái niệm hai tam giác đồng dạngKiến thức cơ bảnDạng bài tập cơ bản Chuyên đề khái niệm hai tam giác đồng dạng Chuyên đề này bao gồm 11 trang tài liệu, tóm tắt các khái niệm quan trọng về hai tam giác đồng dạng, phân loại dạng bài tập và hướng dẫn cách giải. Được tuyển chọn từ cơ bản đến nâng cao, các bài tập trong tài liệu giúp học sinh hiểu rõ về khái niệm hai tam giác đồng dạng. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản Tài liệu tập trung vào những kiến thức cơ bản như cách vẽ tam giác đồng dạng với một tam giác cho trước và cách chứng minh hai tam giác đồng dạng. Học sinh sẽ được hướng dẫn xác định tỉ số đồng dạng và kẻ đường thẳng song song với một cạnh của tam giác. Dạng bài tập cơ bản Các dạng bài tập cơ bản trong tài liệu bao gồm việc vẽ tam giác đồng dạng, chứng minh hai tam giác đồng dạng thông qua việc sử dụng định nghĩa hoặc định lí. Học sinh cũng sẽ được hướng dẫn tính độ dài cạnh và tỉ số đồng dạng thông qua các tam giác đồng dạng. Trong tài liệu, cũng có dạng bài tập chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng, giúp học sinh hiểu rõ hơn về khái niệm này.

Nguồn: sytu.vn

Đọc Sách

Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình một ẩn, nghiệm của phương trình, giải phương trình, phương trình tương đương. – Phương trình bậc nhất một ẩn và cách giải. – Phương trình đưa được về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu (dạng toán chuyển động, dạng toán có nội dung số học, dạng toán năng suất, dạng toán có nội dung hình học). Định lý Ta let – Tính chất đường phân giác của tam giác: – Định lý Talet thuận và đảo. – Hệ quả định lý Talet. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác. II. BÀI TẬP TỰ LUẬN Dạng 1. Giải phương trình. Dạng 2. Giải toán bằng cách lập phương trình. Dạng 3. Hình học tổng hợp. Dạng 4. Nâng cao.
Chuyên đề các trường hợp đồng dạng của tam giác vuông
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề các trường hợp đồng dạng của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông. Hai tam giác vuông đồng dạng với nhau nếu: + Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia. + Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia. 2. Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng. 3. Tỉ số hai đường cao, trung tuyến, phân giác của hai tam giác đồng dạng. + Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng. Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh hai tam giác vuông đồng dạng. Phương pháp giải: Có thể sử dụng một trong các cách sau: + Cách 1: Áp dụng trường hợp đồng dạng của hai tam giác thường vào tam giác vuông. + Cách 2: Sử dụng đặc biệt nhận biết hai tam giác vuông đồng dạng. Dạng 2 . Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán. Phương pháp giải: Sử dụng các trường hợp đồng dạng của hai tam giác vuông (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ, từ đo suy ra điều cần chứng minh. Dạng 3 . Tỉ số diện tích của hai tam giác. Phương pháp giải: Sử dụng định lý tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
Chuyên đề trường hợp đồng dạng thứ ba
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ ba, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Chỉ ra hai cặp góc tương ứng bằng nhau trong hai tam giác để suy ra hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ ba (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ.
Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.