Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh

Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T ≠ A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc OH b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). [ads] + Cho S là tập gồm 2017 số nguyên tố phân biệt và M là tập gồm 2018 số tự nhiên phân biệt sao cho mỗi số trong M đều không là số chính phương và chỉ có ước nguyên tố thuộc S. Chứng minh rằng có thể chọn ra trong M một số số có tích là một số chính phương. + Có 32 học sinh tham gia 33 câu lạc bộ, mỗi học sinh có thể tham gia nhiều câu lạc bộ và mỗi câu lạc bộ có đúng 3 học sinh tham gia. Biết rằng không có 2 câu lạc bộ nào có 3 học sinh giống nhau. Chứng minh rằng có 2 câu lạc bộ chung nhau đúng 1 học sinh.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 12 THPT năm 2021 - 2022 sở GDĐT Vĩnh Phúc
Thứ Bảy ngày 25 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 THPT năm học 2021 – 2022. Đề thi chọn HSG Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn HSG Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc : + Cho hình chóp S.ABCD có SA vuông góc với mặt đáy, ABCD là tứ giác nội tiếp đường tròn đường kính AC. Gọi hai điểm M, N tương ứng là hình chiếu vuông góc của điểm A lên hai đường thẳng SB và SD. Biết SA = a, BD = a3 và BAD = 60°. Tính cosin của góc giữa hai mặt phẳng (AMN) và (ABCD). + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, cạnh AC = a và ABC = 30°. Tứ giác BCC’B’ là hình thoi có B’BC nhọn, mặt phẳng (BCC’B’) vuông góc với mặt phẳng (ABC), góc giữa mặt phẳng (ABB’A’) và mặt phẳng (ABC) bằng 60°. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng BC, B’C’, A’B và A’C. Tính theo a thể tích của khối tứ diện MNPQ. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có góc BAC tù. Đường tròn (C) ngoại tiếp tam giác ABC có phương trình (C): (x + 2)2 + (y – 2)2 = 25. Đường thẳng đi qua A và vuông góc với BC cắt đường tròn (C) tại điểm K(1;-2) (K không trùng với A). Trọng tâm của tam giác ABC là G. Tính diện tích tam giác ABC.
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 - 2022 sở GDĐT Hà Nội
Sáng thứ Năm ngày 23 tháng 12 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Hà Nội : + Chứng minh rằng với mọi m khác 2 hàm số y có đúng 4 điểm cực trị. + Chọn ngẫu nhiên một số từ tập các số tự nhiên có 8 chữ số. Tính xác suất để chọn được số chia hết cho 9 và chứa nhiều nhất một chữ số 9. + Trong mặt phẳng (P), cho xOy = 90° và tia Oz thỏa mãn xOz = 30°; zOy = 60°. Trên tia Oz lấy điểm I sao cho OI = 2a. Trên đường thẳng d đi qua O và vuông góc với (P), lấy điểm S sao cho OS = a. Mặt phẳng (Q) thay đổi đi qua SI và cắt các tia Ox, Oy lần lượt tại A, B (A khác O và B khác O). 1) Tính góc giữa (P) và (Q) khi I là trung điểm AB. 2) Tìm giá trị nhỏ nhất của thể tích khối chóp S.OAB.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Nghệ An
Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2021 – 2022. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Tìm số điểm cực trị của hàm số g(x). + Trong quá trình truy vết lịch sử tiếp xúc của bệnh nhân Covid-19 ở một trường học, trung tâm y tế xác định được 3 giáo viên và một số học sinh có sự liên quan đến bệnh nhân đó. Người ta chọn ngẫu nhiên 10 người trong số các giáo viên và học sinh liên quan để làm xét nghiệm gộp. Biết rằng xác suất để trong 10 người được chọn có 3 giáo viên bằng 6 lần xác suất trong 10 người được chọn đều là học sinh. Tính xác suất để trong 10 người được chọn làm xét nghiệm có nhiều nhất 2 giáo viên. + Cho a, b, c là các số thực không âm thay đổi thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức P = 2a3 + b3 + c3.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bình Định
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào thứ Tư ngày 24 tháng 11 năm 2021.