Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2018 - 2019 trường THPT chuyên Hùng Vương - Phú Thọ

giới thiệu đến bạn đọc bản lời giải chi tiết đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ, đề nhằm đánh giá năng lực môn Toán của học sinh giai đoạn khởi động năm học, đồng thời giúp học sinh ôn lại các kiến thức Toán 10, Toán sau kỳ nghỉ hè kéo dài. Lời giải chi tiết được biên soạn và trình bày bởi quý thầy, cô giáo nhóm Strong Team Toán VD-VDC. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ : + Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2;9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người muốn có 1 tỉ tiền tiết kiệm sau 6 năm gửi ngân hàng bằng cách bắt đầu từ ngày 01/01/2019 đến 31/12/2024, vào ngày 01/01 hàng năm người đó gửi vào ngân hàng một số tiền bằng nhau với lãi suất ngân hàng là 7% /1 năm (tính từ ngày 01/01 đến ngày 31/12) và lãi suất hàng năm được nhập vào vốn. Hỏi số tiền mà người đó phải gửi vào ngân hàng hàng năm là bao nhiêu (với giả thiết lãi suất không thay đổi và số tiền được làm tròn đến đơn vị đồng)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường Châu Thành 2 - Đồng Tháp lần 2
Đề thi thử Quốc gia 2016 môn Toán trường Châu Thành 2 – Đồng Tháp lần 2 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 5 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số trùng phương. Câu 2: Tìm m để hàm số (C) cắt đường thẳng tại 4 điểm phân biệt. Câu 3: a) Tìm mô đun của số phức w. b) Giải phương trình mũ. Câu 4: Tính thể tích khối tròn xoay khi quay hình phẳng (H) quanh trục Ox. Câu 5: a) Viết phương trình đường thẳng d qua tâm I của mặt cầu (S) và vuông góc với mp(P). b) Xác định tọa độ tâm H và tính bán kính của đường tròn giao tuyến đó. Câu 6: a) Giải phương trình lượng giác. b) Tìm số hạng trong khai triển biểu thức. Câu 7: a) Tính thể tích khối cầu ngoại tiếp khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng chéo nhau SM và BG? Xác định góc giữa hai đường thẳng SM và BG. Câu 8: Giải hệ phương trình. Câu 9: Tìm 2 điểm B, C sao cho M là trung điểm AB, trung điểm N của đoạn AC nằm trên đường thẳng ∆, diện tích tam giác ABC bằng 4 và điểm C có hoành độ dương. Câu 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 biến P.
Đề thi thử THPT Quốc gia 2016 môn Toán trường C Nghĩa Hưng - Nam Định
Đề thi thử THPT Quốc gia 2016 môn Toán trường C Nghĩa Hưng – Nam Định có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số trùng phương. Câu 2: Tìm các giá trị của m để hàm số đạt cực trị thỏa mãn điều kiện cho trước. Câu 3: a) Giải phương trình lượng giác. b) Tính môđun của số phức z. Câu 4: a) Giải phương trình logarit. b) Tính xác suất để trong tốp ca đó có ít nhất một học sinh nữ. Câu 5: Tính tích phân. Câu 6: Viết phương trình đường thẳng AB. Viết phương trình phẳng (α). Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (ACI). Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Văn Trỗi - Hà Tĩnh lần 2
Câu 1: Cho hàm số trùng phương a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số bậc 3. b) Tìm m để phương trình có 3 nghiệm phân biệt. Câu 2 1) Tính giá trị biểu thức lượng giác. 2) Giải phương trình bậc 2 của logarit. Câu 3:Tính tích phân bằng phương pháp tích phân từng phần. Câu 4: a) Tính xác suất để số được chọn chia hết cho 3. b) Tìm phần thực và phần ảo của số phức z. Câu 5: Tìm tọa độ điểm H và tính độ dài MH. Câu 6: Tính thể tích khối chóp S.ABCD và khoảng cách giữa HC và SB. Câu 7: Tìm tọa độ đỉnh D, biết D thuộc đường tròn (C). Câu 8: Giải hệ phương trình. Câu 9: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Đoàn Thượng - Hải Dương lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường Đoàn Thượng – Hải Dương lần 3 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Cho hàm số trùng phương 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Biện luận theo m số nghiệm của phương trình. Câu 2 1) Tính môđun của số phức z. 2) Giải bất phương trình mũ. Câu 3:Tính tích phân bằng phương pháp đặt ẩn phụ. Câu 4: Viết phương trình mặt phẳng qua A và vuông góc với d. Tìm tọa độ điểm A’ đối xứng với A qua đường thẳng d. Câu 5: 1) Giải phương trình lượng giác. 2) Bài toán xác suất liên quan tới bóng đá. Câu 6: Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm C đến mặt phẳng (BDM). Câu 7: Giải hệ phương trình. Câu 8: Viết phương trình đường thẳng BC. Câu 9: Tìm giá trị nhỏ nhất của biểu thức P.