Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề chia đa thức một biến đã sắp xếp

Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đa thức một biến đã sắp xếp, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN I. Lý thuyết II. Các dạng bài tập Dạng 1 : Chia đa thức một biến đã sắp xếp (phép chia hết). + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi dư cuối cùng bằng 0. Dạng 2 : Chia đa thức một biến đã sắp xếp (phép chia có dư). + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi đa thức dư có bậc nhỏ hơn bậc của đa thức chia. Dạng 3 : Chia đa thức một biến đã sắp xếp có chứa tham số m. + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi đa thức dư cuối cùng bằng 0 hoặc đa thức dư có bậc nhỏ hơn bậc của đa thức chia. Dạng 4 : Tìm m để số bị chia chia hết cho số chia. Phương pháp 1: Thực hiện phép chia. + Bước 1: Thực hiện chia đa thức chứa tham số ở dạng 3. + Bước 2: Để số bị chia chia hết cho số chia thì phần dư bằng 0. + Bước 3: Giải tìm ra m. Phương pháp 2: Hệ số bất định. + Bước 1: Dựa vào bậc cao nhất của số bị chia và số chia ta gọi dạng tổng quát của thương. + Bước 2: Nhân thương với số chia và chuyển biểu thức về dạng tổng quát. + Bước 3: Cho các hạng tử của biểu thức ở bước 2 và số bị chia bằng nhau, giải tìm được giá trị cần tìm. Phương pháp 3: Phương pháp trị số riêng. + Bước 1: Đưa phép chia về dạng A(x) = B(x).Q(x). + Bước 2: Thay giá trị x để B(x) = 0 vào phương trình trên. + Bước 3: Giải ra ta tìm được giá trị cần tìm. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Chia đa thức một biến đã sắp xếp. Dạng 2: Sắp xếp đa thức theo luỹ thừa giảm dần rồi thực hiện phép chia. Dạng 3: Tìm x. Dạng 4: Phân tích đa thức thành nhân tử rồi thực hiện phép chia. Dạng 5: Sử dụng hằng đẳng thức để thực hiện phép chia. Dạng 6: Tìm đa thức M. Dạng 7: Tìm a và b để A chia hết cho B.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình thoi
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. KIẾN THỨC CƠ BẢN + Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo. + Diện tích hình thoi bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. II. MỘT SỐ DẠNG BÀI Dạng 1: Tính diện tích của tứ giác có hai đường chéo vuông góc. Dạng 2: Tính diện tích hình thoi. Dạng 3: Tìm diện tích lớn nhất (nhỏ nhất) của một hình. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thang
Tài liệu gồm 08 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT + Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao. + Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích hình thang. Phương pháp giải: Sử dụng công thức tính diện tích hình thang. Dạng 2. Tính diện tích hình bình hành. Phương pháp giải: Sử dụng công thức tính diện tích hình bình hành. Dạng 3. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 4. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Phương pháp giải: + Kí hiệu maxS là giá trị lớn nhất của biểu thức S, minS là giá trị nhỏ nhất của biểu thức S. + Sử dụng tính chất đường vuông góc ngắn hcm đường xiên. + Nếu diện tích của một hình luôn nhỏ hon hoặc bằng một hằng số M và tồn tại một ví trí của hình để diện tích bằng M thì M là diện tích lớn nhất của hình. Tương tự với trường hợp diện tích nhỏ nhất. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình chữ nhật
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.