Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề tính toán với số thập phân

Nội dung Tài liệu dạy thêm học thêm chuyên đề tính toán với số thập phân Bản PDF Sản phẩm Tài liệu dạy thêm học thêm chuyên đề tính toán với số thập phân gồm 08 trang, nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán lớp 6.

PHẦN I: TÓM TẮT LÝ THUYẾT
- Phần này sẽ tóm tắt lại lý thuyết về tính toán với số thập phân. Những kiến thức cơ bản cần biết để giải quyết các bài toán tính toán cộng, trừ, nhân, chia thông thường sẽ được tổng hợp và ghi chú ở đây.

PHẦN II: CÁC DẠNG BÀI
- Phần này sẽ giúp học sinh áp dụng những kiến thức đã nêu trong phần lý thuyết để giải quyết các dạng bài tập cụ thể. Có 3 dạng bài chính:
+ Dạng 1: Tính toán cộng, trừ, nhân, chia thông thường. Thông qua việc áp dụng các quy tắc đã được nêu trong phần lý thuyết.
+ Dạng 2: Tính giá trị biểu thức. Bài tập này sẽ yêu cầu học sinh áp dụng các tính chất đã được trình bày trong phần lý thuyết.
+ Dạng 3: Tìm x. Hướng dẫn cách áp dụng các quy tắc đã được trình bày trong phần lý thuyết để tìm ra giá trị của x trong các bài tập.

Định dạng file: WORD (dành cho giáo viên).

Cả tài liệu được thiết kế để giúp cho việc dạy và học các chuyên đề tính toán với số thập phân trở nên dễ dàng và hiệu quả hơn. Mục tiêu của tài liệu là giúp học sinh lớp 6 có thêm nguồn tư liệu tham khảo, làm quen với các dạng bài tập thường gặp và nắm vững kiến thức về tính toán với số thập phân. Qua đó, hướng tới việc nâng cao khả năng giải quyết bài toán và sự tự tin của học sinh trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân và phép chia số tự nhiên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân và phép chia số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép nhân số tự nhiên. Phép nhân hai số tự nhiên a và b cho ta một số tự nhiên gọi là tích của a và b. Kí hiệu a b x hoặc a b. Tính chất giao hoán: Khi đổi chỗ các thừa số trong một tích thì tích đó không thay đổi. Tính chất kết hợp: Muốn nhân một tích hai số với một số thứ ba, người ta có thể nhân số thứ nhất với tích của số thứ hai với số thứ ba. Tính chất phân phối của phép nhân với phép cộng: Muốn nhân một số với một tổng, ta có thể nhân số đó với từng số hạng của tổng, rồi cộng các kết quả lại. 2. Phép chia số tự nhiên. Cho hai số tự nhiên a và b trong đó b 0 nếu có số tự nhiên x sao cho b x a thì ta nói a chia hết cho b và ta có phép chia hết là a b x. Tổng quát: Cho hai số tự nhiên a và b trong đó b 0 ta luôn tìm được hai số tự nhiên là q và r duy nhất sao cho: a b q r trong đó 0 r b. + Nếu r 0 thì ta có phép chia hết. + Nếu r 0 thì ta có phép chia có dư. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: PHÉP NHÂN SỐ TỰ NHIÊN. DẠNG 2: PHÉP CHIA SỐ TỰ NHIÊN.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số tự nhiên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép cộng số tự nhiên. * Phép cộng hai số tự nhiên a và b cho ta một số tự nhiên c gọi là tổng của chúng. Kí hiệu là a + b = c Số hạng Số hạng Tổng. * Tính chất của phép cộng: + Tính chất giao hoán: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi a b b a. + Tính chất kết hợp: Muốn cộng một tổng hai số với một số thứ ba, ta có thể cộng số thứ nhất với tổng của số thứ hai và số thứ ba a b c a b c a b c. + Tính chất cộng với số 0 a a a 0 0. 2. Phép trừ số tự nhiên. * Với hai số tự nhiên a b đã cho, nếu có số tự nhiên c sao cho a b c thì ta có phép trừ a – b = c. Số bị trừ Số trừ Hiệu. * Chú ý: Trong tập hợp phép trừ a b chỉ thực hiện được nếu a b. 3. Các dạng toán thường gặp. Dạng 1: Thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. Phương pháp: Ta sử dụng khái niệm về phép cộng, phép trừ để thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. * Trong phép cộng: muốn tìm số hạng ta lấy tổng trừ số hạng đã biết. * Trong phép trừ: + Muốn tìm số bị trừ ta lấy hiệu cộng số trừ. + Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. Dạng 2: Áp dụng tính chất của phép cộng, phép trừ vào tính nhanh, giải toán. Phương pháp: Áp dụng một số tính chất sau đây: + Khi cộng nhiều số, ta nên sử dụng tính chất giao hoán, kết hợp để nhóm những số hạng có tổng là số chẵn chục, chẵn trăm (nếu có). + Tổng của hai số không đổi nếu ta thêm vào ở số hạng này và bớt đi ở số hạng kia cùng một số đơn vị. + Hiệu của hai số không đổi nếu ta thêm vào số bị trừ và số trừ cùng một số đơn vị. Nếu tổng là một dãy số có các số hạng cách đều ta có công thức: Số số hạng = (số lớn nhất – số nhỏ nhất): khoảng cách giữa hai số + 1 Tổng = (số lớn nhất + số nhỏ nhất). Số số hạng: 2. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. Dạng 2: Áp dụng tính chất của phép cộng, phép trừ vào tính nhanh, giải toán.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT – Trong hệ thập phân, mọi số tự nhiên đều ghi được viết dưới dạng một dãy số lấy trong 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, vị trí của các chữ số trong dãy gọi là hàng. – Cứ 10 đơn vị ở một hàng thì bằng 1 đơn vị của hàng liền trước nó. – Ngoài cách ghi trong hệ thập phân còn cách ghi bằng số La Mã. + Để viết các số La Mã không quá 30 ta dùng ba kí tự sau I V X. Ba chữ số ấy cùng với hai cụm chữ số là IV IX là năm thành phần dùng để ghi số La Mã. Giá trị của mỗi thành phần được ghi trong bảng sau và không thay đổi dù nó đứng ở bất kỳ vị trí nào. Thành phần I V X IV IX Giá trị (viết trong hệ thập phân) 1 5 10 4 9. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm về tập hợp. Một tập hợp gọi tắt là tập bao gồm những đối tượng nhất định. Các đối tượng ấy gọi là các phần tử của tập hợp. 2. Các kí hiệu. – Tập hợp kí hiệu bằng chữ in hoa: A , B , C. – Nếu x là một phần tử của tập hợp A thì ta kí hiệu là: x A. – Nếu y là một phần tử không thuộc tập B thì ta kí hiệu là: y B. 3. Hai cách để mô tả một tập hợp. a) Cách 1. Liệt kê tất cả các phần tử của tập hợp. Viết các phần tử vào trong dấu theo một thứ tự tùy ý nhưng mỗi phần tử chỉ viết 1 lần. VD1: Tập hợp A các số tự nhiên nhỏ hơn 4 là VD2: Tập hợp B các chữ cái trong từ TAP HOP là: B T A P H O. b) Cách 2. Chỉ ra tính chất đặc trưng của các phần tử trong tập. VD3: Tập hợp C các số tự nhiên x nhỏ hơn 6 là C x x là một trong các số tự nhiên đầu tiên. 4. Chú ý. Tập hợp không chứa phần tử nào gọi là tập hợp rỗng và kí hiệu là rỗng. VD: Tập hợp những số tự nhiên bé hơn 0 là tập hợp rỗng. 5. Tập hợp con – Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. – Kí hiệu: A B hay B A, đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. – Chú ý: Tập rỗng là tập hợp con của mọi tập hợp. Tập hợp A là con của chính tập hợp A. – Ví dụ: Cho ba tập hợp: A M N Tập hợp M là tập hợp con của tập hợp A vì các phần tử của tập hợp M đều thuộc tập hợp A. Tập hợp N không là tập hợp con của tập hợp A vì phần tử 1 của tập hợp N không thuộc tập hợp A. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.