Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 9 năm 2019 - 2020 phòng GDĐT Nam Từ Liêm - Hà Nội

Thứ Sáu ngày 06 tháng 12 năm 2019, phòng Giáo dục và Đào tạo UBND quận Nam Từ Liêm, thành phố Hà Nội tổ chức kỳ thi học kỳ 1 môn Toán lớp 9 năm học 2019 – 2020, nhằm kiểm tra chất lượng Toán 9 của học sinh đang theo học tại các trường Trung học Cơ sở trên địa bàn quận Nam Từ Liêm, Hà Nội. Đề thi HK1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Nam Từ Liêm – Hà Nội gồm có 05 bài toán dạng tự luận, học sinh có 90 phút để hoàn thành bài thi học kỳ. Trích dẫn đề thi HK1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Một con thuyền ở địa điểm D di chuyển từ bờ sông a sang bờ sông b với vận tốc trung bình là 2 km/h, vượt qua khúc sông chảy mạnh trong 20 phút. Biết đường đi con thuyền là DE tạo với bờ sông một góc bằng 60 độ. Tính chiều rộng khúc sông. + Lấy điểm A trên (O;R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B, trên (O;R) lấy điểm C sao cho BC = AB. a) Chứng minh rằng CB là tiếp tuyến của (O). b) Vẽ đường kính AD của (O), kẻ CK ⊥ AD. Chứng minh rằng CD // OB và BC.DC = CK.OB. c) Lấy M trên cung nhỏ AC của (O), vẽ tiếp tuyến tại M cắt AB, AC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp tam giác BFE. Chứng minh rằng: ∆MAC đồng dạng ∆IFE.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Nam Định thuộc chuyên mục đề thi HK1 Toán 9 gồm 8 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = (m – 1)x + m. a) Xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2. b) Xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c) Vẽ đồ thị của hai hàm số ứng với giá trị của m tìm được ở các câu a) và b) trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được. [ads] + Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của đường tròn (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2. c) Chứng minh khi A thay đổi trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.