Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Khánh Hòa

Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Huỳnh Kim Linh, Nguyễn Thu Trang, Phạm Hoài, Lê Hoàng Ngọc Đức, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Khánh Hòa trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Khánh Hòa. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Khánh Hòa. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Khánh Hòa. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Khánh Hòa. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Khánh Hòa. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Khánh Hòa. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Khánh Hòa. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Khánh Hòa. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Khánh Hòa. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Khánh Hòa. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Khánh Hòa. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Khánh Hòa. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Khánh Hòa. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Khánh Hòa. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Khánh Hòa. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Khánh Hòa. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Khánh Hòa. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Khánh Hòa. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Khánh Hòa. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Khánh Hòa.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trần Phú - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trần Phú, quận Kiến An, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trần Phú – Hải Phòng : + Mẹ Nam đi chợ bán x quả na, mẹ Nam bán được 1 quả giá 50 000(đồng) và 4 quả giá 35 000 (đồng), số na còn lại mẹ bán với giá 12 000 (đồng) một quả. Gọi y (nghìn đồng) là số tiền mà mẹ Nam thu được sau khi bán hết x quả na. a) Lập công thức tính y theo x. b) Hỏi mẹ Nam đã bán bao nhiêu quả na biết số tiền mẹ Nam thu được là 730 000 (đồng)? + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để sửa một ngôi nhà cần một số thợ làm việc trong một thời gian quy định. Nếu giảm 3 người thì thời gian kéo dài 6 ngày. Nếu tăng thêm 2 người thì xong sớm 2 ngày. Hỏi theo quy định cần bao nhiêu thợ và làm xong trong bao nhiêu ngày, biết rằng khả năng lao động của mỗi thợ đều như nhau? + Một lon nước ngọt hình trụ có thể tích bằng 3 108 cm. Biết chiều cao của lon nước ngọt gấp 2 lần đường kính đáy. Tính diện tích vật liệu cần dùng để làm một vỏ lon như vậy (bỏ qua diện tích phần ghép nối).
Đề thi vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Tìm các giá trị của tham số m để đường thẳng (d): y = -x + m + 1 cắt parabol (P): y = x2 tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn điều kiện x12 – x2 – 4m + 1 = 0. + Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm F, vẽ FE vuông góc với BC tại E. Gọi (O) là đường tròn ngoại tiếp tam giác CEF. Đường thẳng BF cắt (O) tại điểm thứ hai là D, DE cắt AC tại H. a) Chứng minh ABEF là tứ giác nội tiếp. b) Chứng minh FH.CA = CH.FA. c) Đường thẳng AD cắt (O) tại điểm thứ hai là G, FG cắt CD tại I, CG cắt FD tại K. Chứng minh K, I, H thẳng hàng. + Cho hình vuông ABCD và 2025 đường thẳng, biết mỗi đường thẳng đều thỏa hai mãn điều kiện: i) luôn cắt hai cạnh đối diện và không đi qua đỉnh nào của hình vuông. ii) chia hình vuông thành hai phần có tỉ số diện tích bằng 1/2. Chứng minh rằng trong 2025 đường thẳng đó có ít nhất 507 đường thẳng cùng đi qua một điểm.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trung Đô - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trung Đô, thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trung Đô – Nghệ An : + Kết thúc năm học 2022 – 2023 học sinh hai lớp 9A và 9B của một trường THCS tặng lại thư viện trường 494 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A tặng 4 quyển sách giáo khoa và 1 quyển sách tham khảo, mỗi học sinh lớp 9B tặng 5 quyển sách giáo khoa và 2 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 246 quyển. Tính số học sinh của mỗi lớp? + Bác Nam muốn đúc một cống nước hình trụ, không có đáy, cao 1,1m; thành cống dày 8cm và đường kính vành ngoài của cống là 1,2m. Thể tích bê tông cần dùng để đúc cống là bao nhiêu 3 m? (Bỏ qua hao phí, làm tròn kết quả đến hai chữ số ở phần thập phân và lấy π = 3,14). + Cho đường tròn (O) đường kính AB = 2R. Lấy điểm I thuộc đoạn thẳng AB sao cho IA < IB, kẻ dây MN vuông góc với đường kính AB tại I. Trên đoạn MI lấy điểm E (E khác M, I). Tia AE cắt đường tròn tại điểm thứ hai là K. a. Chứng minh tứ giác IEKB nội tiếp. b. Chứng minh (AE.AK + BI.BA) không phụ thuộc vào vị trí điểm I. c. Xác định vị trí của điểm I sao cho chu vi tam giác MIO đạt giá trị lớn nhất?
Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dùng cho thí sinh thi vào lớp chuyên Toán) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p6 − 1 chia hết cho n. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Gọi K là trung điểm của đoạn thẳng AH. 1. Chứng minh tứ giác DEKF nội tiếp đường tròn, gọi đường tròn đó là (S). 2. Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ. 3. Gọi M, N lần lượt là giao điểm của (S) với các đoạn thẳng BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt MN tại T. Gọi X, Y là các giao điểm của đường tròn (S) với đường tròn ngoại tiếp tam giác BHC. Chứng minh các điểm T, X, Y thẳng hàng. + Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh.