Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 6 đề thi thử sức trước kỳ thi chất lượng học kỳ 1 môn Toán 10

Nhằm hỗ trợ các em trong quá trình ôn tập chuẩn bị cho kỳ thi học kỳ 1 Toán 10, giới thiệu đến các em bộ đề tuyển tập 6 đề thi thử sức trước kỳ thi chất lượng học kỳ 1 môn Toán 10, bộ đề được biên soạn bởi thầy Lương Tuấn Đức, mỗi đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, yêu cầu học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn bộ đề tuyển tập 6 đề thi thử sức trước kỳ thi chất lượng học kỳ 1 môn Toán 10 : + Giả sử trong tương lai, đất nước Việt Nam chúng ta sẽ xây dựng cổng Hà Nội, và được mệnh danh là công trình kiến trúc vòm cao tây tại Đông Bán cầu. Người ta lập một hệ trục tọa độ sao cho một chân cổng đi qua gốc tọa độ, chân kia của cổng có tọa độ (160;0), một điểm M trên thân cổng có tọa độ (10;50). Các bạn hãy tính toán xem chiều cao h của cổng gần nhất với giá trị nào? [ads] + Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, t là thời gian tính theo giây, mốc thời gian là khi quả bóng được đá lên, h là độ cao tính theo m. Giả thiết quả bóng được đá từ độ cao 2m và đạt được độ cao 9m sau 1 giây, đồng thời sau 8 giây quả bóng lại trở về độ cao 2m. Hỏi trong khoảng thời gian 6 giây kể từ lúc được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu? + Một cửa hàng bán sản phẩm với giá 12 USD. Với giá bán này, cửa hàng bán được khoảng 40 sản phẩm. Cửa hàng dự định giảm giá bán, ước tính cứ giảm 2 USD thì bán thêm được 20 sản phẩm. Xác định giá bán 1 sản phẩm để cửa hàng thu được lợi nhuận nhiều nhất, biết rằng giá mua về của một sản phẩm là 2 USD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Nhân Chính - Hà Nội
Đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Nhân Chính – Hà Nội mã đề 132 gồm có 02 trang, đề gồm 20 câu trắc nghiệm và 03 bài toán tự luận, thời gian làm bài HK1 Toán 10 là 90 phút. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Nhân Chính – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho điểm A(1;2), B(-2;1). Tìm tọa độ điểm M để tam giác MAB vuông cân tại M. + Tìm giá trị của tham số m để phương trình sau có nghiệm: x^2 + 1/x^2 + x + 1/x – 2m = 0. + Cho hình vuông ABCD cạnh a. Gọi M, N lần lượt thuộc đoạn BC, AC sao cho: BM = 1/3.MC, CN = kAN. Tìm k sao cho AM vuông góc với DN.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Vinh Lộc - TT Huế
Thứ Tư ngày 18 tháng 12 năm 2019, trường THPT Vinh Lộc, tỉnh Thừa Thiên Huế tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Vinh Lộc – TT Huế mã đề C gồm có 04 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm có 40 câu, chiếm 8 điểm, phần tự luận gồm 2 câu, chiếm 2 điểm, học sinh làm bài thi trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Vinh Lộc – TT Huế : + Trường THPT Vinh Lộc (Thừa Thiên Huế) có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả ba lớp trồng được là 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh? A. Lớp 10A có 45 em, lớp 10B có 40 em, lớp 10C có 43 em. B. Lớp 10A có 45 em, lớp 10B có 43 em, lớp 10C có 40 em. C. Lớp 10A có 40 em, lớp 10B có 43 em, lớp 10C có 45 em. D. Lớp 10A có 43 em, lớp 10B có 40 em, lớp 10C có 45 em. [ads] + Cho vectơ ED (khác vectơ không). Chọn khẳng định đúng? A. Độ dài của đoạn thẳng ED là phương của vectơ ED. B. Độ dài của đoạn thẳng ED là giá của vectơ ED. C. Độ dài của đoạn thẳng ED là độ dài của vectơ ED. D. Độ dài của đoạn thẳng ED là hướng của vectơ ED. + Khẳng định nào sau đây là đúng? A. Tập hợp A là tập con của tập hợp B nếu mọi phần tử của A đều là phần tử của B. B. Tập hợp A là tập con của tập hợp B nếu mọi phần tử của B đều là phần tử của A. C. Tập hợp A là tập con của tập hợp B nếu có ít nhất một phần tử của A thuộc B. D. Tập hợp A là tập con của tập hợp B nếu A có số phần tử ít hơn số phần tử của B.
Đề thi học kỳ 1 Toán 10 năm học 2019 - 2020 sở GDĐT Vĩnh Phúc
Chiều thứ Hai ngày 16 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng học kỳ 1 môn Toán 10 năm học 2019 – 2020, nhằm đánh giá kết quả học tập môn Toán của học sinh khối 10 trong giai đoạn HK1 vừa qua. Đề thi học kỳ 1 Toán 10 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc có mã đề 132, đề thi gồm có 2 trang với 10 câu trắc nghiệm (chiếm 30% tổng số điểm) và 7 câu tự luận (chiếm 70% tổng số điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Điều kiện cần và đủ để AB = CD là các vectơ AB và CD thỏa mãn: A. cùng phương, cùng độ dài. B. cùng hướng. C. cùng độ dài. D. cùng hướng, cùng độ dài. + Trong các câu sau, câu nào là mệnh đề? A. Tiết trời mùa thu thật dễ chịu! B. Số 15 không chia hết cho 2. C. Bạn An có đi học không? D. Chúc các bạn học sinh thi đạt kết quả tốt! [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;4), B(2;-3), C(1;-2) và D(-1;3m + 3). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm m để ba điểm A, B, D thẳng hàng. + Cho Parabol (P) có phương trình y = f(x) = ax^2 + bx + c và có đồ thị như hình vẽ. Tính giá trị f(-2). + Cho tam giác ABC, gọi M là trung điểm BC, điểm I thỏa mãn 2IA + IB + IC = 0. Chứng minh I là trung điểm AM.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường Đinh Tiên Hoàng - TP HCM
Đề thi HK1 Toán 10 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM gồm 30 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM : + Cho parabol (P) có dạng: y = ax2 + bx + c (a khác 0). Viết phương trình (P) biết (P) đi qua 3 điểm M(1;2), N(2;11), P(3;6). + Cho phương trình x^2 – x + m – 2 = 0. a) Tìm m để phương trình có hai nghiệm trái dấu. b) Với giá trị m nào thì phương trình có hai nghiệm phân biệt x1, x2 sao cho x1 = 3×2. + Trong mặt phẳng Oxy, cho ba điểm A(0;5); B(2;1); C(8;4). a) Chứng minh ba điểm A, B, C tạo thành một tam giác. b) Tìm tọa độ trung điểm của các cạnh AB, AC, BC. Tìm tọa độ điểm G với G là trọng tâm tam giác ABC. c) Tính cosAB.AC. d) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành. e) Tìm tọa độ điểm E biết BE = 3AC – 2BC.