Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải nhanh bài toán số phức bằng máy tính Casio - Nguyễn Việt Anh

Tài liệu gồm 12 trang hướng dẫn các phương pháp giải nhanh bài toán số phức bằng máy tính Casio – Vinacal kèm theo các bài tập rèn luyện, tài liệu được biên soạn bởi tác giả Nguyễn Việt Anh, đây là các kỹ thuật giải toán mà các em nên tìm hiểu để phát huy tối đa công dụng của máy tính cầm tay trong giải toán số phức, giúp tìm ra hướng giải và tiết kiệm thời gian. A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao. Bài toán tổng quát : Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z. Phương pháp giải : + Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2. + Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường. Tính Moldun, Argument và số phức liên hợp của số phức Z: + Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả. + Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2. B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại. 1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó. Bài toán tổng quát : Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số. Phương pháp giải : Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho. Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1. + Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =. + Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức. 2. Đưa số phức về dạng lượng giác và ngược lại. Bài toán tổng quát : Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi). Phương pháp giải : + Ấn shift chọn 4 (r < θ) sau khi nhập số phức. + Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b. Chuyển từ lượng giác về số phức: chuyển về radian: + Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-)). + Ấn shift 2 chọn 4 (a = bi) và lấy kết quả. 3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức. Làm tương tự như dạng chính tắc của số phức. [ads] C. Phương trình số phức và các bài toán liên quan. 1. Phương trình không chứa tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là? Phương pháp giải : + Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức. + Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án. 2. Phương trình tìm tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c. Phương pháp giải : + Mode 2 và lần lượt thay các hệ số ở đáp án vào đề. + Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng. D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài). Bài toán tổng quát : Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z? Phương pháp giải : + Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi. + Calc a = 1000 và b = 100. + Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b. + Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể. + Sau khi tìm được a, b ta làm nốt yêu cầu của đề. E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức. Bài toán tổng quát : Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện. Phương pháp giải : Ưu tiên việc sử dụng 2 máy tính để giải: + Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát. + Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án. + Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng. F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện. Phương pháp giải : + Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế. + Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng.

Nguồn: toanmath.com

Đọc Sách

Bài toán min - max số phức có lời giải chi tiết - Lương Văn Huy
Tài liệu gồm 53 trang được biên soạn bởi thầy Lương Văn Huy tuyển tập bài toán min – max số phức có lời giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán THPT Quốc gia. Tài liệu phù hợp với đối tượng học sinh khá, giỏi muốn ôn tập chinh phục điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. Một số tính chất cần nhớ 1. Môđun của số phức 2. Một số quỹ tích nên nhớ [ads] Một số dạng đặc biệt cần lưu ý + Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng + Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn + Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip
Trắc nghiệm nâng cao số phức - Đặng Việt Đông
Tài liệu gồm 84 trang được biên soạn bởi thầy Đặng Việt Đông tuyển tập các bài toán trắc nghiệm nâng cao số phức có hướng dẫn giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc, tài liệu phù hợp với các em học sinh khá, giỏi nhằm ôn luyện điểm 8 – 9 – 10 hướng đến kỳ thi THPT Quốc gia môn Toán. Các dạng toán số phức nâng cao : + Dạng 1: Tính toán trên số phức + Dạng 2: Phương trình trên số phức + Dạng 3: Tìm tập hợp điểm, biểu diễn số phức + Dạng 4: Số phức có môđun nhỏ nhất, lớn nhất + Dạng 5: GTLN, GTNN trên số phức [ads] Xem thêm : + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông + Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông
Tài liệu tự học chủ đề số phức - Trần Quốc Nghĩa
Tài liệu tự học chủ đề số phức do thầy Trần Quốc Nghĩa biên soạn gồm 84 trang giới thiệu các dạng toán số phức điển hình và hướng dẫn phương pháp giải, trong mỗi dạng gồm hệ thống các bài tập tự luận – trắc nghiệm có đáp án giúp học sinh tự học tại nhà. Nội dung tài liệu : Vấn đề 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC  Dạng 1: Số phức và thuộc tính của nó Dạng 2: Các phép toán về số phức Dạng 3: Chứng minh tính chất của số phức Dạng 4: Tập hợp điểm Vấn đề 2. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH Dạng 1: Căn bậc hai của số phức Dạng 2: Phương trình Vấn đề 3. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC Dạng 1: Viết dạng lượng giác của số phức Dạng 2: Công thức Moivre [ads] Vấn đề 4. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC 1 – Dạng đại số của số phức 2 – Phương trình trên tập số phức 3 – Tập hợp điểm 4 – Giá trị lớn nhất nhỏ nhất của môđun số phức Vấn đề 5. SỐ PHỨC TRONG CÁC ĐỀ THI ĐH – CĐ – THPTQG Phần 1: Các đề tự luận trước 2017 Phần 2. Các đề minh họa, đề chính thức kỳ thi THPTQG 2017 – 2018 Vấn đề 6. CÁC ĐỀ KIỂM TRA 1 TIẾT GIẢI TÍCH 12 CHƯƠNG 4
Số phức và các dạng toán - Phùng Hoàng Em
Tài liệu gồm 37 trang do thầy Phùng Hoàng Em biên soạn tóm tắt lý thuyết số phức, phân dạng, ví dụ minh họa có lời giải và tuyển tập các bài tập trắc nghiệm có đáp án chuyên đề số phức. I. TÓM TẮT LÝ THUYẾT SỐ PHỨC  1. Số phức và các khái niệm liên quan 2. Phép toán trên số phức 3. Phương trình bậc hai với hệ số thực II. CÁC DẠNG TOÁN SỐ PHỨC THƯỜNG GẶP Dạng 1. Xác định các đại lượng liên quan đến số phức Dạng 2. Số phức bằng nhau Dạng 3. Điểm biểu diễn số phức Dạng 4. Lũy thừa với đơn vị ảo [ads] Dạng 5. Phương trình với hệ số phức Dạng 6. Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai Dạng 7. Xác định số phức bằng cách giải hệ phương trình Dạng 8. Biễu diễn hình học của số phức Dạng 9. Max- min của mô-đun số phức III. BÀI TẬP TRẮC NGHIỆM TỔNG ÔN SỐ PHỨC CÓ ĐÁP ÁN