Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam

Nội dung Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Bản PDF Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán lớp 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán lớp 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán 11 lần 2 năm 2021 - 2022 trường THPT Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán khối 11 lần 2 năm học 2021 – 2022 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề MĐ 101 MĐ 102 MĐ 103 MĐ 104 MĐ 105 MĐ 106 MĐ 107 MĐ 108 MĐ 109 MĐ 110 MĐ 111 MĐ 112. Trích dẫn đề KSCL Toán 11 lần 2 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Mệnh đề nào sau đây đúng? A. Hàm số y x cot là hàm số chẵn và là hàm số lẻ trên tập hợp. B. Hàm số y x cot là hàm số lẻ trên tập hợp. C. Hàm số y x cot là hàm số chẵn trên tập hợp. D. Hàm số y x cot không là hàm số chẵn và không là hàm số lẻ trên tập hợp. + Trong các khẳng định sau, khẳng định nào sai? A. Qua 3 điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. B. Qua 1 đường thẳng và 1 điểm bất kỳ có duy nhất một mặt phẳng. C. Qua 2 đường thẳng cắt nhau có duy nhất một mặt phẳng. D. Qua 2 đường thẳng song song có duy nhất một mặt phẳng. + Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 7 học sinh nam và 4 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.
Đề KSCL Toán 11 lần 3 năm 2021 - 2022 trường THPT Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán khối 11 lần 3 năm học 2021 – 2022 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề MĐ 101 MĐ 102 MĐ 103 MĐ 104 MĐ 105 MĐ 106 MĐ 107 MĐ 108 MĐ 109 MĐ 110 MĐ 111 MĐ 112. Trích dẫn đề KSCL Toán 11 lần 3 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Cho hình chóp S ABCD có tứ giác ABCD là hình chữ nhật. Gọi M N lần lượt là trung điểm của cạnh SA SB (tham khảo hình vẽ bên). Đường thẳng MN vuông góc với đường thẳng nào trong các đường thẳng sau đây? A. Đường thẳng AB. B. Đường thẳng BC. C. Đường thẳng AC. D. Đường thẳng BD. + Xét các mệnh đề: I: Mặt phẳng nào vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại. II: Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau hoặc trùng nhau. III: Đường thẳng nào vuông góc với một trong hai mặt phẳng song song thì cũng vuông góc với mặt phẳng còn lại. IV: Hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau. Số mệnh đề sai trong các mệnh đề trên là? + Xét các mệnh đề: I: Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia. II: Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau. III: Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. Số mệnh đề sai trong các mệnh đề trên là?
Đề KSCL Toán 11 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng môn Toán 11 hướng đến kỳ thi tốt nghiệp THPT năm học 2021 – 2022 lần 1 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 146. Trích dẫn đề KSCL Toán 11 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc : + Cho hàm số y fx liên tục và đồng biến trên [2021;2022]. Giả sử f f 2021 4 2022 5. Khi đó số nghiệm thực của phương trình f x 0 trên [2021;2022] bằng? + Trong không gian nếu mặt phẳng (P) chứa hai đường thẳng a b cắt nhau và cùng song song với mặt phẳng (Q) thì hai mặt phẳng (P) và (Q) A. vuông góc B. cắt nhau C. trùng nhau D. song song. + Cho hình chóp S ABCD có đáy là hình vuông cạnh a SA ABCD. Hai điểm M N lần lượt thay đổi trên hai cạnh CB CD. Giả sử CM m CN n. Nếu hai mặt phẳng (SAM) và (SMN) vuông góc với nhau thì m n thỏa mãn hệ thức?
Đề KSCL Toán 11 lần 1 năm 2022 - 2023 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng môn Toán 11 thi tốt nghiệp THPT lần 1 năm học 2022 – 2023 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi mã đề 123 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề KSCL Toán 11 lần 1 năm 2022 – 2023 trường THPT chuyên Vĩnh Phúc : + Đội học sinh giỏi trường THPT Chuyên Vĩnh Phúc gồm có 8 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Chọn ngẫu nhiên 8 học sinh. Xác suất để trong 8 học sinh được chọn có đủ 3 khối là? + Cho các khẳng định (1): Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất. (2): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất. (3): Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa. (4): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng. Số khẳng định sai trong các khẳng định trên là? + Trong trận chung kết bóng đá phải phân định thắng thua bằng đá luân lưu 11 mét. Huấn luyện viên của mỗi đội cần trình với trọng tài một danh sách sắp xếp thứ tự 5 cầu thủ trong số 11 cầu thủ để đá luân lưu 5 quả 11 mét. Số cách lập danh sách 5 cầu thủ đá 11 mét là?