Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Giải tích

Tài liệu gồm 559 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM 3. BÀI 1 – SỰ BIẾN THIÊN CỦA HÀM SỐ 3. Tóm tắt lý thuyết cơ bản 3. Dạng toán cơ bản 3. + Dạng ➀: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 3. + Dạng ➁: Tính đơn điệu của f(x), g(u) biết các đồ thị không tham số 8. + Dạng ➂: Tính đơn điệu của f(x), g(u) biết các BBT, BXD 11. + Dạng ➃: Tính đơn điệu f(x), g(u) liên quan biểu thức đạo hàm 24. + Dạng ➄: Tính đơn điệu của hàm liến kết h(x) = f(u) + g(x) biết các BBT, BXD 25. + Dạng ➅: Tính đơn điệu của hàm g(x) khi biết đồ thị, BBT của f(u) 29. + Dạng ➆: Tìm tham số để hàm bậc nhất trên bậc nhất đơn điệu 30. + Dạng ➇: Tính đơn điệu của hs chứa dấu GTTĐ có tham số biết đồ thị, BBT 38. BÀI 2 – CỰC TRỊ CỦA HÀM SỐ 40. Tóm tắt lý thuyết cơ bản 40. Dạng toán cơ bản 41. + Dạng ➀: Cực trị của một hàm số cho bởi một công thức và các câu hỏi liên quan 41. + Dạng ➁: Cực trị f(x), f(u) biết các đồ thị không tham số 43. + Dạng ➂: Cực trị f(x), f(u) biết các BBT, BXD không tham số 51. + Dạng ➃: Cực trị f(x), f(u) liên quan biểu thức đạo hàm không tham số 69. + Dạng ➄: Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức khi biết đồ thị, BBT 78. + Dạng ➅: Tìm tham số để f(x) đạt cực trị tại 1 điểm x0 cho trước 84. + Dạng ➆: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 3 thỏa mãn ĐK 87. + Dạng ➇: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 4 trùng phương thỏa mãn ĐK (không GTTĐ) 92. + Dạng ➈: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 94. + Dạng ➉: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 95. BÀI 3 – GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT 103. Tóm tắt lý thuyết cơ bản 103. Dạng toán cơ bản 103. + Dạng ➀: GTLN, GTNN của f(x) trên đoạn biết biểu thức f(x) 104. + Dạng ➁: GTLN, GTNN của f(x) trên khoảng biết biểu thức f(x) 115. + Dạng ➂: GTLN, GTNN của hàm số g(x) biết các BBT, đồ thị 116. + Dạng ➃: Bài toán ứng dụng, tối ưu, thực tế 118. + Dạng ➄: GTLN, GTNN liên quan hàm số hợp g(f(x)), f(u(x)) khi biết các đồ thị, BBT 121. + Dạng ➅: Tìm m để hs f(x) có GTLN, GTNN thỏa mãn đk cho trước 123. + Dạng ➆: Tìm tham số để hs chứa dấu GTTĐ, hàm hợp, hàm liên kết có GTLN, GTNN thỏa mãn đk cho trước 125. BÀI 4 – ĐƯỜNG TIỆM CẬN 128. Tóm tắt lý thuyết cơ bản 128. Dạng toán cơ bản 128. + Dạng ➀: Câu hỏi lý thuyết về tiệm cận, không chứa tham số 129. + Dạng ➁: Tiệm cận của đồ thị hàm số không chứa căn thức, không tham số 129. + Dạng ➂: Tiệm cận của đồ thị hàm số chứa căn, không chứa tham số 136. + Dạng ➃: Tiệm cận đồ thị hàm số f(x) dựa vào BBT không tham số 139. + Dạng ➄: Tiệm cận đồ thị hàm số f(x) dựa vào đồ thị không tham số 143. BÀI 5 – KHẢO SÁT HÀM SỐ 144. Tóm tắt lý thuyết cơ bản 144. Dạng toán cơ bản 146. + Dạng ➀: Nhận dạng hàm số – đồ thị 146. + Dạng ➁: Nhận dạng hàm số – BBT 164. + Dạng ➂: Tính chất đồ thị – hàm số – đạo hàm 168. + Dạng ➃: Liên quan giao điểm từ 2 đồ thị không chứa tham số 170. + Dạng ➄: Bài toán đưa về tìm số nghiệm của phương trình f(u) = 0 (không tham số) 177. + Dạng ➅: Ứng dụng KSHS vào giải PT – BPT – BĐT – HỆ không tham số 198. + Dạng ➆: Dạng toán đưa về tìm tham số để PT, BPT, hệ có nghiệm, có k nghiệm khi biết các đồ thị, BBT 203. + Dạng ➇: Tìm tham số để BPT – HỆ nghiệm đúng với mọi x thuộc D 209. + Dạng ➈: Tham số liên quan đến tương giao của các đồ thị thỏa mãn đk về độ dài, góc, diện tích 213. + Dạng ➉: Điểm đặc biệt, tính chất đặc biệt liên quan đồ thị hàm số 218. + Dạng ⓫: Các bài toán liên quan đến phương trình của hàm ẩn 221. CHUYÊN ĐỀ HÀM SỐ LŨY THỪA – HS MŨ – HS LOGARIT 232. BÀI 1 + 2 – LŨY THỪA – HÀM SỐ LŨY THỪA 232. Tóm tắt lý thuyết cơ bản 232. Dạng toán cơ bản 234. + Dạng ➀: Kiểm tra quy tắc biến đổi lũy thừa, tính chất 234. + Dạng ➁: Tính toán, rút gọn các biểu thức chỉ chứa các số cụ thể 234. + Dạng ➂: Tính toán, rút gọn các biểu thức có chứa biến 235. + Dạng ➃: So sánh các lũy thừa 236. + Dạng ➄: Tập xác định của hàm số chứa hàm lũy thừa 237. + Dạng ➅: Đạo hàm hàm số lũy thừa 237. BÀI 3 – LOGARIT 239. Tóm tắt lý thuyết cơ bản 239. Dạng toán cơ bản 240. + Dạng ➀: Câu hỏi lý thuyết, quy tắc biến đổi và tính chất 240. + Dạng ➁: Tính toán liên quan đến logarit dùng đẳng thức 246. + Dạng ➂: So sánh các biểu thức logarit 255. + Dạng ➃: Biểu diễn logrit qua logarit khác 255. BÀI 4 – HÀM SỐ MŨ – HÀM SỐ LOGARIT 257. Tóm tắt lý thuyết cơ bản 257. Dạng toán cơ bản 258. + Dạng ➀: Tập xác định liên quan hàm số mũ, hàm số logarit 258. + Dạng ➁: Đạo hàm liên quan hàm số mũ, hàm số logarit 263. + Dạng ➂: Sự biến thiên có liên quan đến mũ, loga 269. + Dạng ➃: Min – Max liên quan hàm mũ, hàm logarit (1 biến) 270. + Dạng ➄: Đồ thị liên quan hàm số mũ, logarit 271. + Dạng ➅: Bài toán lãi suất 272. + Dạng ➆: Bài toán tăng trưởng 278. + Dạng ➇: Hàm số mũ, logarit chứa tham số 281. + Dạng ➈: Min – Max liên quan hàm mũ, hàm logarit (nhiều biến) 283. BÀI 5 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ 297. Tóm tắt lý thuyết cơ bản 297. Dạng toán cơ bản 298. + Dạng ➀: PT – BPT mũ cơ bản, gần cơ bản 298. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 303. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 305. + Dạng ➃: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 305. + Dạng ➄: Phương pháp hàm số, đánh giá (không tham số) 309. + Dạng ➅: Phương trình mũ có chứa tham số 314. BÀI 6 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LOGARIT 318. Tóm tắt lý thuyết cơ bản 318. Dạng toán cơ bản 318. + Dạng ➀: PT – BPT loga cơ bản, gần cơ bản (không tham số) 318. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 327. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 329. + Dạng ➃: Phương pháp mũ hóa (không tham số) 330. + Dạng ➄: PP phân tích thành nhân tử (không tham số) 330. + Dạng ➅: Phương pháp hàm số, đánh giá (không tham số) 332. + Dạng ➆: Phương trình loga có chứa tham số 342. + Dạng ➇: Bất phương trình loga chứa tham số 347. + Dạng ➈: Hệ có chứa loga 347. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 348. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 351. + Dạng ⓫: Phương trình, bất phương trình tổ hợp cả mũ và loga (có tham số) 352. CHUYÊN ĐỀ NGUYÊN HÀM – TÍCH PHÂN 369. BÀI 1 – NGUYÊN HÀM 369. Tóm tắt lý thuyết cơ bản 369. Dạng toán cơ bản 370. + Dạng ➀: Định nghĩa, tính chất của nguyên hàm 370. + Dạng ➁: Nguyên hàm của hs cơ bản, gần cơ bản 370. + Dạng ➂: PP đổi biến số t = u(x) hàm xác định (ngắn gọn là vi phân) 383. + Dạng ➃: PP nguyên hàm từng phần 385. + Dạng ➄: Nguyên hàm của hs phân thức hữu tỷ 387. + Dạng ➅: Nguyên hàm liên quan đến hàm ẩn 389. + Dạng ➆: Nguyên hàm của hs cho bởi nhiều công thức 392. + Dạng ➇: Tìm nguyên hàm thỏa mãn ĐK cho trước 395. BÀI 2 – TÍCH PHÂN 398. Tóm tắt lý thuyết cơ bản 398. Dạng toán cơ bản 401. + Dạng ➀: Kiểm tra định nghĩa, tính chất của tích phân 401. + Dạng ➁: Tích phân cơ bản (a) kết hợp tính chất (b) 408. + Dạng ➂: PP đổi biến t = u(x) – hàm công thức xđ (ngắn gọn là vi phân) 416. + Dạng ➃: PP tích phân từng phần – hàm xđ 417. + Dạng ➄: Tích phân đặc biệt – hàm xđ 418. + Dạng ➅: Tích phân dựa vào đồ thị 418. + Dạng ➆: Tích phân chứa tham số (chỉ trong kết quả) 421. + Dạng ➇: Tích phân liên quan đến phương trình hàm ẩn 424. BÀI 3 – ỨNG DỤNG TÍCH PHÂN 431. Tóm tắt lý thuyết cơ bản 431. Dạng toán cơ bản 434. + Dạng ➀: Câu hỏi lý thuyết 434. + Dạng ➁: Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định 435. + Dạng ➂: Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định 449. + Dạng ➃: Thể tích tính theo mặt cắt S(x) 451. + Dạng ➄: Bài toán thực tế sử dụng diện tích hình phẳng 452. + Dạng ➅: Ứng dụng vào bài toán chuyển động 454. + Dạng ➆: Ứng dụng tích phân vào đại số (min – max, cực trị, so sánh, đơn điệu) 459. + Dạng ➇: Diện tích khi biết dạng các đồ thị hoặc hàm ẩn 462. CHUYÊN ĐỀ SỐ PHỨC 475. BÀI 1 – ĐỊNH NGHĨA SỐ PHỨC 475. Tóm tắt lý thuyết cơ bản 475. Dạng toán cơ bản 476. + Dạng ➀: Các yếu tố và thuộc tính cơ bản của số phức 476. + Dạng ➁: Hai số phức bằng nhau và ứng dụng hai số phức bằng nhau 480. + Dạng ➂: Các yếu tố và thuộc tính cơ bản của số phức 483. + Dạng ➃: Thực hiện các phép toán cơ bản về số phức 488. + Dạng ➄: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 491. + Dạng ➅: Tìm số phức thỏa mãn đk cho trước 497. + Dạng ➆: Câu hỏi lý thuyết, biểu diễn liên quan đến 1 số phức 505. + Dạng ➇: Biểu diễn số phức qua các phép toán 508. + Dạng ➈: Tập hợp điểm biểu diễn của số phức z độc lập 511. + Dạng ➉: Tìm tâm, bán kính của đường tròn biểu diễn số phức z độc lập 512. BÀI 2 – CÁC PHÉP TOÁN SỐ PHỨC 513. Tóm tắt lý thuyết cơ bản 513. Dạng toán cơ bản 515. + Dạng ➀: Thực hiện các phép toán cơ bản về số phức 515. + Dạng ➁: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 518. + Dạng ➂: Tìm số phức thỏa mãn đk cho trước 524. + Dạng ➃: Sử dụng Module và liên hợp để giải toán số phức 531. + Dạng ➄: Min – Max liên quan đến quỹ tích là đường tròn 537. + Dạng ➅: Min – Max liên quan đến quỹ tích là đường elip 538. + Dạng ➆: Min – Max liên quan đến quỹ tích là đa giác 539. BÀI 3 – PHƯƠNG TRÌNH BẬC HAI 540. Tóm tắt lý thuyết cơ bản 540. + Dạng ➀: Tính toán biểu thức nghiệm 541. + Dạng ➁: Định lí Viet và ứng dụng 549. + Dạng ➂: Phương trình quy về bậc hai, phương trình bậc cao 550. + Dạng ➃: Các bài toán biểu diễn hình học nghiệm của phương trình 550. + Dạng ➄: Các bài toán khác về phương trình 555.

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt
Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.
Tổng ôn 50 dạng toán thi tốt nghiệp THPT năm 2022 môn Toán
Tài liệu gồm 310 trang, tuyển tập 50 dạng toán tổng ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022. Chương 1 . 50 Dạng Toán THPT Quốc Gia 1. Bài 1. PHÂN TÍCH CHI TIẾT ĐỀ MINH HỌA BỘ GIÁO DỤC 2022 1. Câu 1. Đề minh hoạ BGD 2022 1. + Dạng 1. Xác định mô-đun, phần thực, phần ảo, số phức liên hợp của số phức1. Câu 2. Đề minh hoạ BGD 2022 2. + Dạng 2. Phương trình mặt cầu 3. Câu 3. Đề minh hoạ BGD 2022 3. + Dạng 3. Tìm điểm trên đồ thị hàm số 4. Câu 4. Đề minh hoạ BGD 2022 4. + Dạng 4. Tổ hợp-Chỉnh hợp-Hoán vị 4. Câu 5. Đề minh hoạ BGD 2022 6. + Dạng 5. Tìm nguyên hàm bằng định nghĩa, tính chất, bảng nguyên hàm 6. Câu 6. Đề minh hoạ BGD 2022 7. + Dạng 6. Tìm cực trị của hàm số dựa vào bảng biến thiên 7. Câu 7. Đề minh hoạ BGD 2022 8. + Dạng 7. Bất phương trình mũ cơ bản 8. Câu 8. Đề minh hoạ BGD 2022 8. + Dạng 8. Tính thể tích khối chóp 9. Câu 9. Đề minh hoạ BGD 2022 9. + Dạng 9. Hàm số lũy thừa 9. Câu 10. Đề minh hoạ BGD 2022 10. + Dạng 10. Phương trình mũ-Phương trình logarit cơ bản 10. Câu 11. Đề minh hoạ BGD 2022 11. + Dạng 11. Tính tích phân bằng định nghĩa và tính chất tích phân 11. Câu 12. Đề minh hoạ BGD 2022 12. + Dạng 12. Xác định các yếu tố cơ bản số phức qua các phép toán 12. Câu 13. Đề minh hoạ BGD 2022 13. + Dạng 13. Tìm VTPT của mặt phẳng 13. Câu 14. Đề minh hoạ BGD 2022 14. + Dạng 14. Tìm tọa độ điểm-Tọa độ vec-tơ liên quan đến hệ tọa độ Oxyz 14. Câu 15. Đề minh hoạ BGD 2022 15. + Dạng 15. Biểu diễn hình học của số phức 15. Câu 16. Đề minh hoạ BGD 2022 15. + Dạng 16. Tiệm cận của đồ thị hàm số 16. Câu 17. Đề minh hoạ BGD 2022 17. + Dạng 17. Biến đổi, rút gọn biểu thức có chứa logarit 18. Câu 18. Đề minh hoạ BGD 2022 18. + Dạng 18. Nhận dạng đồ thị hay BBT của hàm số 19. Câu 19. Đề minh hoạ BGD 2022 20. + Dạng 19. Xác định các yếu tố cơ bản của đường thẳng 20. Câu 20. Đề minh hoạ BGD 2022 22. + Dạng 20. Tổ hợp-Chỉnh hợp-Hoán vị 22. Câu 21. Đề minh hoạ BGD 2022 23. + Dạng 21. Tính thể tích khối lăng trụ 24. Câu 22. Đề minh hoạ BGD 2022 24. + Dạng 22. Tính đạo hàm hàm số mũ-logarit 24. Câu 23. Đề minh hoạ BGD 2022 25. + Dạng 23. Xét sự đồng biến-nghịch biến của hàm số dựa vào bảng biến thiên26. Câu 24. Đề minh hoạ BGD 2022 26. + Dạng 24. Câu hỏi lý thuyết về khối nón-khối trụ 26. Câu 25. Đề minh hoạ BGD 2022 28. + Dạng 25. Tính tích phân bằng tích chất của tích phân 28. Câu 26. Đề minh hoạ BGD 2022 29. + Dạng 26. Cấp số cộng-Cấp số nhân 30. Câu 27. Đề minh hoạ BGD 2022 30. + Dạng 27. Tính nguyên hàm bằng định nghĩa, tính chất và bảng nguyên hàm31. Câu 28. Đề minh hoạ BGD 2022 31. + Dạng 28. Tìm cực trị của hàm số dựa vào bảng biến thiên 32. Câu 29. Đề minh hoạ BGD 2022 32. + Dạng 29. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [a; b] 33. Câu 30. Đề minh hoạ BGD 2022 33. + Dạng 30. Xét sự đồng biến , nghịch biến của hàm số cho bởi công thức 34. Câu 31. Đề minh hoạ BGD 2022 34. + Dạng 31. Tính giá trị biểu thức có chứa logarit 35. Câu 32. Đề minh hoạ BGD 2022 35. + Dạng 32. Tính góc giữa đường thẳng và mặt phẳng 36. Câu 33. Đề minh hoạ BGD 2022 38. + Dạng 33. Tính tích phân bằng tính chất tích phân 39. Câu 34. Đề minh hoạ BGD 2022 39. + Dạng 34. Viết phương trình mặt phẳng 40. Câu 35. Đề minh hoạ BGD 2022 42. + Dạng 35. Thực hiện các phép toán về số phức: Cộng-trừ-nhân-chia 42. Câu 36. Đề minh hoạ BGD 2022 42. + Dạng 36. Khoảng cách từ một điểm đến mặt phẳng 43. Câu 37. Đề minh hoạ BGD 2022 44. + Dạng 37. Tính xác suất của biến cố 45. Câu 38. Đề minh hoạ BGD 2022 45. + Dạng 38. Viết phương trình đường thẳng 45. Câu 39. Đề minh hoạ BGD 2022 46. + Dạng 39. Bất phương trình mũ – Logarit- BPT tích 47. Câu 40. Đề minh hoạ BGD 2022 47. + Dạng 40. Sự tương giao của hai đồ thị hàm số 48. Câu 41. Đề minh hoạ BGD 2022 49. + Dạng 41. Tìm nguyên hàm của hàm số thỏa điều kiện cho trước 49. Câu 42. Đề minh hoạ BGD 2022 49. + Dạng 42. Thể tích khối chóp-khối lăng trụ liên quan đến khoảng cách, góc.50. Câu 43. Đề minh hoạ BGD 2022 51. + Dạng 43. Xác định các yếu tố cơ bản của số phức qua các phép toán hay bài toán qui về phương trình, hệ phương trình nghiệm thực – PT bậc 2 52. Câu 44. Đề minh hoạ BGD 2022 52. + Dạng 44. Min- Max của số phức 54. + Dạng 45. Sử dụng biến đổi đại số kết hợp với các bất đẳng thức quen thuộc để đánh giá 55. + Dạng 46. Sử dụng biểu diễn hình học của số phức đưa về các bài toán cực trị quen thuộc 56. Câu 45. Đề minh hoạ BGD 2022 57. + Dạng 47. Tính diện tích hình phẳng 59. Câu 46. Đề minh hoạ BGD 2022 59. + Dạng 48. Viết phương trình đường thẳng 60. Câu 47. Đề minh hoạ BGD 2022 61. + Dạng 49. Tính thể tích của khối nón, khối trụ liên quan đến thiết diện của nón hay trụ 62. Câu 48. Đề minh hoạ BGD 2022 64. + Dạng 50. Bất phương trình mũ-loagrit- Phương pháp đặt ẩn phụ- phương pháp hàm số 65. Câu 49. Đề minh hoạ BGD 2022 65. + Dạng 51. Bài toán liên quan đến mặt cầu-mặt phẳng-đường thẳng 66. Câu 50. Đề minh hoạ BGD 2022 67. + Dạng 52 68. Phần I Tổng ôn các câu hỏi mức độ TB – Khá. Chương 2. Hình không gian Oxyz 71. Bài 1. Hệ trục tọa độ, góc, khoảng cách & vị trí tương đối 71. A Kiến thức cần nhớ 71. Bài 2. Mặt cầu và phương trình mặt cầu 82. A Phương trình mặt cầu 83. B Các dạng viết phương trình mặt cầu thường gặp 83. Bài 3. Mặt phẳng và phương trình mặt phẳng 90. A Mặt phẳng 90. B Phương trình mặt phẳng 90. Bài 4. Đường thẳng và phương trình đường thẳng 99. A Đường thẳng 99. B Phương trình đường thẳng 99. Bảng đáp án 110. Chương 3. Nguyên hàm, tích phân và ứng dụng 112. Bài 1. Tính chất nguyên hàm và tích phân, bảng nguyên hàm 112. Bài 2. Diện tích & thể tích tròn xoay 127. Bài 3. Thể tích theo mặt cắt S(x) ⇒ V = Z b a S(x) dx 132. Bảng đáp án 137. Chương 4. Số phức 138. Bảng đáp án 145. Chương 5. Cấp số cộng – Cấp số nhân – Tổ hợp – Xác suất 146. Bài 1. Cấp số cộng và cấp số nhân 146. Bài 2. Hoán vị – Chỉnh hợp – Tổ hợp 149. Bài 3. Xác suất 151. Bảng đáp án 155. Chương 6. Góc & khoảng cách 157. Bài 1. Góc giữa đường thẳng và mặt phẳng 157. Bài 2. Góc giữa hai mặt phẳng 159. Bài 3. Góc giữa hai đường thẳng 161. Bài 4. Khoảng cách từ một điểm đến mặt phẳng 162. Bài 5. Khoảng cách giữa hai đường thẳng chéo nhau 164. Bảng đáp án 168. Chương 7. Hàm số và các vấn đề liên quan đến hàm số 169. Bài 1. Đơn điệu và cực trị 169. Bài 2. Giá trị lớn nhất và nhỏ nhất 177. Bài 3. Tiệm cận 188. Bài 4. Nhận dạng đồ thị hàm số 191. Bài 5. Sự tương giao 194. Bài 6. Phương trình tiếp tuyến 195. Bảng đáp án 196. Chương 8. Mũ & Lôgarit 198. Bài 1. Công thức mũ & lôgarit và bài toán biến đổi 198. Bài 2. Tập xác định và đạo hàm của hàm số mũ, hàm số logarit 203. Bài 3. Tập xác định và đạo hàm 208. Bài 4. Phương trình và bất phương trình mũ, lôgarit 210. A Kiến thức cần nhớ 210. B Bài tập luyện tập 210. Bảng đáp án 217. Chương 9. Thể tích khối đa diện 218. Bài 1. Thể tích khối chóp 218. Bài 2. Thể tích lăng trụ, lập phương, hộp chữu nhật 221. Bảng đáp án 225. Chương 10. Nón – trụ – cầu 226. Bài 1. Khối nón 226. Bài 2. Khối trụ 228. Bài 3. Khối cầu 232. Bảng đáp án 233. Phần II Tổng ôn mức vận dụng – vận dụng cao. Chương 39. Bất phương trình mũ – Logarit 236. A Bài tập mẫu 236. B Bài tập tương tự và phát triển 236. Bảng đáp án 239. Chương 40. Hàm số 240. A Bài tập mẫu 240. B Bài tập tương tự và phát triển 241. Bảng đáp án 249. Chương 41. Nguyên hàm – Tích phân hàm ẩn 250. A Bài tập mẫu 250. B Bài tập tương tự và phát triển 250. Bảng đáp án 253. Chương 42. Thể tích khối đa diện 254. A Bài tập mẫu 254. B Bài tập tương tự và phát triển 254. Bảng đáp án 260. Chương 43. Số phức 261. A Bài tập mẫu 261. B Bài tập tương tự và phát triển 261. Bảng đáp án 264. Chương 44. Cực trị số phức 265. A Bài tập mẫu 265. B Bài tập tương tự và phát triển 266. Bảng đáp án 268. Chương 45. Ứng dụng tích phân 269. A Bài tập mẫu 269. B Bài tập tương tự và phát triển 270. Bảng đáp án 275. Chương 46. Toạ độ không gian Oxyz 276. A Bài tập mẫu 276. B Bài tập tương tự và phát triển 276. Bảng đáp án 282. Chương 47. Khối tròn xoay 283. A Bài tập mẫu 283. B Bài tập tương tự và phát triển 283. Bảng đáp án 287. Chương 48. Mũ – Logarit 288. A Bài tập mẫu 288. B Bài tập tương tự và phát triển 288. Bảng đáp án 291. Chương 49. Toạ độ không gian Oxyz 292. A Bài tập mẫu 292. B Bài tập tương tự và phát triển 292. Bảng đáp án 297. Chương 50. Max – min hàm số 298. A Bài tập mẫu 298. B Bài tập tương tự và phát triển 299. Bảng đáp án 302.
Tài liệu ôn thi tốt nghiệp THPT môn Toán năm học 2021 - 2022
Tài liệu gồm 208 trang, tuyển tập 50 đề trắc nghiệm ôn thi tốt nghiệp THPT môn Toán năm học 2021 – 2022; các đề được biên soạn dựa trên ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán của Bộ Giáo dục và Đào tạo.
50 dạng toán ôn thi tốt nghiệp THPT năm 2022 môn Toán
Tài liệu gồm 186 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 50 dạng toán ôn thi tốt nghiệp THPT năm 2022 môn Toán, tương ứng với 50 câu trắc nghiệm trong đề minh họa tốt nghiệp THPT 2022 môn Toán. 1 Số phức 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 1. C Bài tập tương tự và phát triển 2. D Bảng đáp án 4. 2 Các yếu tố cơ bản về mặt cầu 5. A Kiến thức cần nhớ 5. B Bài tập mẫu 5. C Bài tập tương tự và phát triển 6. D Bảng đáp án 7. 3 Tìm điểm thuộc đồ thị, đường thẳng 8. A Kiến thức cần nhớ 8. B Bài tập mẫu 8. C Bài tập tương tự và phát triển 8. D Bảng đáp án 10. 4 Khối nón – trụ – cầu 11. A Kiến thức cần nhớ 11. B Bài tập mẫu 11. C Bài tập tương tự và phát triển 12. D Bảng đáp án 14. 5 Nguyên hàm cơ bản 15. A Kiến thức cần nhớ 15. B Bài tập mẫu 15. C Bài tập tương tự và phát triển 15. D Bảng đáp án 18. 6 Cực trị của hàm số 19. A Kiến thức cần nhớ 19. B Bài tập mẫu 20. C Bài tập tương tự và phát triển 20. D Bảng đáp án 25. 7 Bất phương trình mũ và bất phương trình lôgarit 26. A Tóm tắt lý thuyết 26. B Bài tập mẫu 26. C Bài tập tương tự và phát triển 26. D Bảng đáp án 30. 8 Thể tích của khối chóp cơ bản 31. A Kiến thức cần nhớ 31. B Bài tập mẫu 31. C Bài tập tương tự và phát triển 31. D Bảng đáp án 34. 9 Tập xác định hàm số lũy thừa, hàm số lôgarit 35. A Kiến thức cần nhớ 35. B Bài tập mẫu 35. C Bài tập tương tự và phát triển 35. D Bảng đáp án 36. 10 Phương trình lôgarit 37. A Kiến thức cần nhớ 37. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 37. D Bảng đáp án 38. 11 Tích Phân sử dụng tính chất cơ bản 39. A Kiến thức cần nhớ 39. B Bài tập mẫu 39. C Bài tập tương tự và phát triển 39. D Bảng đáp án 43. 12 Phép toán trên số phức 44. A Kiến thức cần nhớ 44. B Bài tập mẫu 44. C Bài tập tương tự và phát triển 44. D Bảng đáp án 46. 13 Xác định các yếu tố cơ bản của mặt phẳng 47. A Kiến thức cần nhớ 47. B Bài tập mẫu 47. C Bài tập tương tự và phát triển 47. D Bảng đáp án 49. 14 Véc-tơ trong không gian 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 53. 15 Điểm biểu diễn số phức 54. A Kiến thức cần nhớ 54. B Bài tập mẫu 54. C Bài tập tương tự và phát triển 55. D Bảng đáp án 57. 16 Tiệm cận 58. A Kiến thức cần nhớ 58. B Bài tập mẫu 58. C Bài tập tương tự và phát triển 58. D Bảng đáp án 62. 17 Tính giá trị lôgarit 63. A Kiến thức cần nhớ 63. B Bài tập mẫu 63. C Bài tập tương tự và phát triển 63. D Bảng đáp án 67. 18 Nhận dạng đồ thị 68. A Kiến thức cần nhớ 68. B Bài tập mẫu 70. C Bài tập tương tự và phát triển 70. D Bảng đáp án 79. 19 Phương trình đường thẳng 80. A Kiến thức cần nhớ 80. B Bài tập mẫu 82. C Bài tập tương tự và phát triển 82. 20 Hóa vị – chỉnh hợp – tổ hợp 85. A Kiến thức cần nhớ 85. B Bài tập mẫu 85. C Bài tập tương tự và phát triển 85. D Bảng đáp án 86. 21 Thể tích 87. A Kiến thức cần nhớ 87. B Bài tập mẫu 88. C Bài tập tương tự và mở rộng 88. D Bảng đáp án 89. 22 Đạo hàm của hàm số mũ, logarit 90. A Kiến thức cần nhớ 90. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 91. 23 Xét tính đơn điệu của hàm số 92. A Kiến thức cần nhớ 92. B Bài tập mẫu 92. C Bài tập tương tự và phát triển 92. D Bảng đáp án 96. 24 Các yếu tố cơ bản mặt tròn xoay 97. A Kiến thức cần nhớ 97. B Bài tập mẫu 97. C Bài tập tương tự và phát triển 98. D Bảng đáp án 99. 25 Tích Phân sử dụng tính chất cơ bản 100. A Kiến thức cần nhớ 100. B Bài tập mẫu 100. C Bài tập tương tự và phát triển 100. D Bảng đáp án 101. 26 Cấp số cộng, cấp số nhân 102. A Kiến thức cần nhớ 102. B Bài tập mẫu 102. C Bài tập tương tự và phát triển 102. D Bảng đáp án 105. 27 Nguyên hàm 106. A Kiến thức cần nhớ 106. B Bài tập mẫu 106. C Bài tập tương tự và phát triển 106. D Bảng đáp án 107. 28 Cực trị của hàm số dựa vào BBT, Đồ thị 108. A Kiến thức cần nhớ 108. B Bài tập mẫu 108. C Bài tập tương tự và phát triển 109. D Bảng đáp án 110. 29 Tìm GTLN & GTNN của hàm số 111. A Kiến thức cần nhớ 111. B Bài tập tương tự và phát triển 112. C Bảng đáp án 117. 30 Xét tính đơn điệu của hàm số 118. A Kiến thức cần nhớ 118. B Bài tập mẫu 118. C Bài tập tương tự và phát triển 118. D Bảng đáp án 120. 31 Tính giá trị lôgarit 121. A Kiến thức cần nhớ 121. B Bài tập mẫu 121. C Bài tập tương tự và phát triển 121. D Bảng đáp án 124. 32 Tích phân hàm ẩn 125. A Tóm tắt lý thuyết 125. B Kiến thức cần nhớ 125. C Bài tập mẫu 125. D Bài tập tương tự và phát triển 125. E Bảng đáp án 128. 34 Viết phương trình mặt phẳng liên quan đến đường thẳng 129. A Kiến thức cần nhớ 129. B Bài tập mẫu 129. C Bài tập tương tự và phát triển 130. D Bảng đáp án 134. 35 Số phức 135. A Kiến thức cần nhớ 135. B Bài tập mẫu 135. C Bài tập tương tự và phát triển 136. D Bảng đáp án 138. 36 Khoảng cách từ điểm đến mặt phẳng 139. A Kiến thức cần nhớ 139. B Bài tập mẫu 139. C Bài tập tương tự và phát triển 140. D Bảng đáp án 144. 37 Xác suất 145. A Kiến thức cần nhớ 145. B Bài tập mẫu 146. C Bài tập tương tự và phát triển 147. D Bảng đáp án 148. 38 Phương trình đường thẳng 149. A Kiến thức cần nhớ 149. B Bài tập mẫu 151. C Bài tập tương tự và phát triển 151. 39 Bất phương trình mũ và bất phương trình lôgarit 156. A Tóm tắt lý thuyết 156. B Bài tập mẫu 156. C Bài tập tương tự và phát triển 157. D Bảng đáp án 160. 40 Tính đơn điệu của hàm số liên kết 161. A Kiến thức cần nhớ 161. B Bài tập mẫu 163. C Bài tập tương tự và phát triển 163. D Bảng đáp án 174. 41 Cực trị số phức 175. A Kiến thức cần nhớ 175. B Bài tập mẫu 176. C Bài tập tương tự và phát triển 177. D Bảng đáp án 180.